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Figure 1: Deformation results using our method. Point handles are inside the mesh and marked as red dots. (Models courtesy of Cyberware.)

Abstract

We present a 3d deformation method based on Moving Least
Squares that extends the work by Schaefer et al. [Schaefer et al.
2006] to the 3d setting. The user controls the deformation by ma-
nipulating a set of point handles. Locally, the deformation takes
the form of either a rigid transformation or optionally a similarity
transformation, and tends to preserve local features. Our derivation
of the closed-form solution is based on singular value decomposi-
tion, and is applicable to deformation in arbitrary dimensions, as
opposed to the planar case in [Schaefer et al. 2006]. Our prototype
implementation allows interactive deformation of meshes of over
100k vertices.

For the application of 3d mesh deformation, we further introduce a
weighting scheme that determines the influence of point handles on
vertices based on approximate mesh geodesics. In practice, the new
scheme gives much better deformation results for limbed character
models, compared with simple Euclidean distance based weighting.
The new weighting scheme can be of use to the traditional skinny
based deformation technique as well.

1 Introduction

3d deformation is useful for various modeling and animation tasks
such as surface sculpting and character animation. There have re-
cently been a number of works on gradient-domain mesh based de-
formation, e.g., [Lipman et al. 2005; Huang et al. 2006; Botsch and
Kobbelt ]. Such methods are capable of preserving local surface
details during editing, and is usually “global” in the sense that the
algorithms explicitly scatters the desired deformation, often spec-
ified on a set of handle vertices, across the entire mesh, usually
through least-square solving a large sparse linear system connect-
ing every pair of neighboring mesh elements. Huang et al. [Huang
et al. 2006] further introduces a non-linear optimizing framework,
allowing the incorporation of various non-linear constraints such as
rigidity constraint and volume constrain.
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In our work, we explore an alternative “local” approach to-
wards feature preserving deformation. Our work mainly builds
upon the 2d image deformation technique introduced by Schae-
fer et al. [Schaefer et al. 2006], which solves for the optimal rigid
transformation that maps a set of weighted point handles to their
deformed positions, at each image domain point. The image do-
main point is than transformed by the optimal rigid transformation
at that point. Because an optimal transformation is calculated for
every point to be deformed, it is called Moving Least Square.

The work-flow of deforming a model using our method is as follow-
ing. The user first defines a set of point handles around the model
that he wants to deform. He can then drag the point handles around,
and the model will deform in a smooth and realistic manner such
that the region close to a handle will move to the new position of
the handle.

The amount of influence a handle has on a point in space depends
on the “distance” between them, as measured by a distance function
d. For the purpose of realistically deforming a mesh containing var-
ious parts, simple euclidean distance often has the effect of making
a handle influence parts of the mesh that are geometrically close,
but logically shouldn’t be under the handle’s influence. For exam-
ple, in a human model, the parts corresponding to the left and right
feet are close geometrically. If we place a handle one each of the
feet, however, the handle on the left feet should not influence the
right feet, in spite of the geometric closeness. To amend such prob-
lem, we introduce a distance function, the value of which equals
the length of the shortest polyline that first connects the handle to a
vertex on the mesh, and then travels from that vertex to the vertex in
question via mesh edges. In practice, this distance function seems
to provide excellent results.

2 Related Work

Lipman et al.[Lipman et al. 2005] represents mesh geometry as lo-
cal frames and discrete forms, which are local properties that en-
code the mesh in a rotation and translation invariant way. They
then allow manual editing some of the local frames, and solve a
large, sparse linear system to find the optimal mesh that fits the
given local frames. In contrast, our method performs singular value



decomposition on a small 3x3 matrix for every vertex. As can be
seen from Figure 2, even though our method does not explicitly
apply any inter-vertex constraint, the quality of the resulting de-
formation looks as good. An added advantage is that the interface
to our animation system is simpler, the user just defines and drags
point handles. In the case [Lipman et al. 2005], the user needs to
explictly apply rotational transformation on the selection.

Figure 2: Twisting a cube using different methods. The top one is
the classic skeleton-subspace deformation, the middle one is [Lip-
man et al. 2005]. The bottom one is our method.

Lewis et al. [Lewis et al. 2000] provides a summary of more tradi-
tional deformation techniques, including the skeleton subspace de-
formation (SSD), also known as skinning. SSD transforms a given
point using a linear combination of several rigid transformations
corresponding to the influencing bones. This approach interpolate
rotation in an unnatural way, whereas Moving Least Square doesn’t
exhibit this problem. Figure 2 shows twisting a cube. In the case of
SSD, at the middle of the cube, the side length of the square cross
section is 1/

√
2 of the side length of the cross section at the two

ends, i.e., the cube shrinks in the middle, which would be undesir-
able for the purpose of animation.

The concept of as-rigid-as-possible transformation is first intro-
duced by Alexa et al.[Alexa et al. 2000] in the context of image
morphing. They dissect source and target objects into isomorphic
simplicial complexes. Then for every pair of source and target sim-
plex, they factor the transformation between them into an optimal
rotation and scale-shear parts, and interpolate the two individually.
Igarashi et al.[Igarashi et al. 2005] apply the idea in the context of
2d shape manipulation. They triangulate the input image and solve
a linear system whose size is equal to the number of vertices in the
triangulation. Because of the need to solve a global system, they re-
port that their method somewhat slow when there are 300 vertices
on a 1 GHz machine. In contrast, Schaefer et al.[Schaefer et al.
2006], whose work we build upon, performs image deformation by
solving a small 2x2 linear system locally at each grid point.

3 Deformation

We now describe the deformation process. The mathematical for-
mulation is based on [Schaefer et al. 2006] with minor modification.
However, extending everything from R2 to R3 requires different
methods for solving the minimization problem in question.

The user controls the deformation using a set of N control points.
Through out this paper we will use bold lowercase letters to denote

elements in R3, represented as a column vector. Let pi be the orig-
inal position of the point handle i (1 ≤ i ≤ N ) and qi its deformed
position. Given any point x in space, a function d(x,pi) is defined
that measures the distance between x and pi. The simple Euclidean
distance function can be used, although a better alternative exists
for the purpose of deforming a 3d mesh (Section 4).

To define the deformation at point x, we solve for the best rigid or
similarity transformation Tx that minimizes

E =
X

i

wi(x)|Tx(pi)− qi|2 (1)

where the weights wi(·) is of the form

wi(x) = d(pi,x)−2α,

with α being a fall-off parameter controlling how strongly the de-
formation at x is influenced by far away (as measured by d) point
handles.

The deformation at x is simply defined to map x to Tx(x). Note
that if x = pi for some i, then wi(x) = ∞, so Tx(pi) = qi

(assuming the pi’s are distinct). In other words, the deformation is
interpolating [Schaefer et al. 2006].

3.1 Rigid Transformation

Now we describe how to solve for the optimal transformation Tx at
x. We first concentrate on the case when Tx is completely rigid.

Schaefer et al. [Schaefer et al. 2006] finds a closed form expression
for Tx in 2d by first deriving a closed form expression for the op-
timal similarity transformation, and then normalizing the similarity
transformation. They prove that the optimal similarity transforma-
tion and the optimal rigid transformation for a point in space is re-
lated by a uniform scaling, i.e., their rotational components are the
same. However, we were not able to easily adapt their derivation to
the 3d case.

Fortunately, it turns out that finding the optimal rigid transforma-
tion minimizing E (1) is a long solved problem. Eggert et al. [Eg-
gert et al. 1997] give a survey on the topic. The problem has
been known as the “Procrustes problem” and dates back to the
1960s [Schönemann 1996]. For completeness, we give a deriva-
tion of its solution using singular value decomposition. More re-
cently, Müller et al.[Müller et al. 2005] uses the same formulation
to perform rigid shape matching in their physics simulation system,
although they use a different, physically based weighting scheme.

Fix x. Tx, being a rigid transformation, has the form Tx(y) =
My + r, where M is a 3 by 3 orthogonal matrix, and r is the
translational component. Let p∗ and q∗ be the weighted centroids
of pi’s and qi’s:

p∗ =

P
i wi(x)piP

i wi(x)
, q∗ =

P
i wi(x)qiP

i wi(x)
.

The translational component of Tx must map p∗ to q∗, i.e., r =

q∗ − p∗. This leaves only M to be determined. Let αi = wi(x)
1
2 ,

p̃i = pi − p∗, q̃i = qi − q∗, P = αi(p̃1 · · · p̃N ), Q =
αi(q̃1 · · · q̃N ) (P and Q are 3 by N matrices). Then

E =
X

i

wi(x)|M(p̃i)− q̃i|2 =
X

i

|M(αip̃i)− αiq̃i|2

= ‖MP −Q‖2F = tr((MP −Q)t(MP −Q))

= tr(P tP ) + tr(QtQ)− 2tr(QtMP ),



where ‖ · ‖F is the Frobenius norm. Since P and Q are constant,
minimizing E corresponds to maximizing ζ = tr(QtMP ) =
tr(MPQt). Note that PQt has a singular value decomposition
PQt = UΛV t such that Λ = diag(λ1, λ2, λ3) is diagonal with
non-negative entries, and U , V are orthogonal. Thus

ζ = tr(MPQt) = tr(MUΛV t) = tr(U tM tV Λ).

Write N = U tM tV , then N is orthogonal since U , M , and V are
orthogonal. It follows that |Ni,j | ≤ 1, and

ζ = tr(NΛ) =

3X
i=1

Ni,iλi ≤
3X

i=1

λi.

Hence, ζ is maximized when N = 1 ⇔ M = V U t.

In summary, to calculate Tx(x). First calculate p∗ and q∗. Then
perform singular value decomposition on PQt =

P
i wi(x)(pi −

p∗)(qi−q∗)
t = UΛV t. Finally let Tx(x) = V U t(x−p∗)+q∗.

3.2 Similarity Transformation

Now we extend the above derivation to the case where Tx is al-
lowed to be a similarity transformation. As in the previous section,
Tx(y) = M̃y + r, whereas M̃ = ρM for some orthogonal 3 by 3
matrix M and a positive scaling factor ρ > 0. Then

E = tr(P tP )ρ2 + tr(QtQ)− 2tr(MPQt)ρ,

so minimizing E is the same as minimizing η = tr(P tP )ρ2 −
2tr(MPQt)ρ. Again substitute PQt by its singular value decom-
position UΛV t and we have

η ≥ tr(P tP )ρ2 − 2tr(Λ)ρ,

where the equality is reached when M = V U t. Then η is quadratic
in ρ and is minimized when ρ = tr(Λ)/tr(P tP ).

In our prototype implementation, we provides a user specified pa-
rameter s that controls the maximally allowed scaling. At each
point ρ is clamped to [1 − s, 1/(1 − s)], so s = 0 corresponds
to completely rigid transformation, whereas s = 1 corresponds to
similarity transformation with arbitrary uniform scaling.

3.3 Numerical Considerations

The mapping from the set of possible handle positions to the opti-
mal transformation at a particular point is actually not a continuous
function. Consider three point handles a, b, c arranged in the shape
of the letter L, as shown in Figure 3. As we move c to the position
of c′, the optimal transformations for points around b changes from
close to identity to a 180◦ rotation along the line connection a and
b. By making b and c really close to each other, a movement of c
by some tiny amount can cause the optimal transformation to jump
from identity to a large amount of rotation.

We find that this discontinuity can cause artifacts in practice. Again
consider the above L shaped configuration and suppose the handle
a is placed quite far away from b and c. Moreover, suppose the
fall-off exponential α is set quite high. Then a small movement of c
might cause a huge rotation for points around b. However, because
of the large fall-off and floating point round-off errors, for points
around a, it would be as if b and c haven’t changed their relative
positions. This results in visible discontinuity across the surface as
shown in Figure 3.

Figure 3: Effects of fall-off exponential and damping. From top
to bottom are: (1) before deformation; (2) after deformation, small
fall-off, and no damping; (3) after deformation, big fall-off, and no
damping; (4) after deformation, big fall-off, and with damping.

One approach to alleviate such a problem is to introduce a damp-
ing factor which prevents the optimal transformation to change too
fast. More specifically, we add an additional term to our minimizing
goal:

E′ = E + δ‖M −Mp‖2F = ‖MP ′ −Q′‖2F
where Mp is the matrix M from the last frame, δ is a scalar con-
trolling how much damping is performed, P ′ = (P δ

1
2 I) is the

previous P with a 3 by 3 identity matrix scaled by δ
1
2 juxtaposed on

the right, and Q′ = (Q δ
1
2 Mp) is the previous Q with Mp scaled

by δ
1
2 juxtaposed on the right. The damping will prevent sudden

rotational jump from frame to frame, but also makes the deforma-
tion look a little laggy. This kind of strategy is also used in inverse
kinematics algorithms to prevent jumpy solutions near singularities
[Buss and Kim 2005].

We note, however, that in practice we rarely encounter such discon-
tinuities when there are more than four or five point handles. Thus
δ is rarely set to a non-zero value in real-world applications.

4 Distance Calculation

In Section 3, we use the function d to measure the distance between
a handle and a point in space. This distance, together with the fall-
off exponential α, determines how much influence the handle has
on the point.

When we are deforming a model represented as a polygonal mesh,
it is typical for the model to have distinct parts. For example, the
model of a horse would have legs connected to the body. If we
place handles on the four legs of the horse, although a handle can
be geometrically very close to a leg it is not placed on, the handle
should have minimal influence on that leg.

Ling and Jacobs [Ling and Jacobs 2007] propose the definition of
inner distance for 2d shapes, defined as the “length of the shortest
path between landmark points within the shape silhouette”. This
seems to capture what we intuitively would like our distance func-
tion to be. In our horse example, the distance between a handle and
a vertex on a leg that the handle is not placed on would then be the



length of a polyline going first from the handle into the body, and
then from the body to the other leg.

Ling and Jacobs’s method works as following: They create a graph
containing all vertices from the shape silhouettes. An edge connect-
ing two vertices exist in the graph if these two vertices are “visible”
from each other, i.e., the line segment connecting them is not inter-
sected by any edge of the shape silhouette. Then to find the inner
distance between two vertices, they just find the shortest path be-
tween them within the defined graph.

A direct adaption of Ling and Jacob’s method to 3d would be pro-
hibitively expensive. For every pair of mesh vertices, the line seg-
ment connecting them would have to be checked against every face
in the mesh, a O(n3) process, where n is the number of vertices.
Also, the resulting shortest distance computed will still only be an
approximation of the actual inner distance, since the shortest poly-
line connecting two points in 3d can actually cut through a face or
an edge.

We propose a different kind of distance function that is similar in
spirit to “inner distance” in that it tries to stay within the mesh. It is
computed as following: To find the distance between a point handle
and a mesh vertex, first create a graph consisting of all the edges
and vertices in the mesh, together with a new node representing the
point handle. Next for every mesh vertex, create an edge between
the point handle and the mesh vertex if they’re “visible” to each
other, i.e., the line segment connecting them is not intersected by
any mesh face. Finally, the distance between the point handle and
any mesh vertex is define to be the length of their shortest path in
the graph. This results in an O(n2) algorithm and is practical for
meshes containing thousands of vertices. The new distance function
works surprisingly well in practice, as demonstrated in Figure 4.

Figure 4: Comparison of deformation based on Euclidean dis-
tance function (left) and our distance function (right).

Finally, we note that calculating the visibility of mesh vertices from
a point is actually the classic visible surface determination problem.
One way to get approximate visibility information without any pre-
calculation is to just use a z-buffer algorithm. This would reduce the
running time of the graph construction phase of the algorithms from
O(n2) down to O(Cn), where the constant C corresponds to the
average time needed to rasterization a triangle. This would make
the method practical for meshes containing hundreds of thousands
of vertices.

5 Results and Discussions

In our prototype implementation, we use Jacobian iterations[Golb
and Loan 1991] to calculate the singular value decomposition of the
3 by 3 matrix for each point we want to deform. On a Pentium-M
1.8GHz laptop, we were able to interactively deform models of up
to 100k vertices.

We have also implemented the improved distance function, but
without the z-buffer optimization. In that case, prepossessing of
several minutes is required to calculate the distance from each mesh
vertex to each point handle for a mesh of 6k vertices, although we
expect the performance to improve once we implement the z-buffer
optimization, reducing running time from O(n3) to O(n2) where
n is the size of the mesh.

Using our method, we were able to realistically deform complex ar-
ticulate models such as a horse and a human, as shown in Figure 1
within a matter of minutes (excluding the time needed to precalcu-
late the distance function).

One problem that we noticed with our method is that the implied
least-square minimization sometimes causes unexpected deforma-
tion, often in the form a weird looking limb. In such cases, adding
a second point handle allows us to fix the situation and fine tune the
local deformation.

6 Conclusions and Future Work

We have presented a method for deforming 3d models using point
handles. The deformation is based on Moving Least Square: each
point in space is transformed by a rigid or similarity transformation
that tries to map the point handles to their deformed positions. Such
a transformation is optimal in the sense of weighted least-square.
We demonstrate how to solve the optimization problem using sin-
gular value decomposition, thus making the technique available to
deformation in all dimensions. For the purpose of mesh deforma-
tion, a new weighting scheme is introduced that determines the in-
fluence of point handles on vertices based on approximate mesh
geodesics. In practice, this scheme gives visually pleasing result
and would be of use to the traditional skeleton-subspace deforma-
tion method.

In the future, we plan to work on better user interfaces for ma-
nipulating the point handles. Currently one inconvenience of our
method is that the user often needs to place a pair of handles at a
joint to fine tune the local deformation. Managing the pair of han-
dles (e.g., keeping them at constant distance from each other and
properly oriented) then becomes quite a hassle. A smart user inter-
face should be able to take that burden off the user. More generally,
it might be useful to maintain some kind of skeleton-type organiza-
tion among the point handles. Right now if the user drags a handle
defined on the hand of a character, the handle for the elbow will
not move along. If the handles are connected through an explicit
skeleton, inverse kinematics algorithms can then be used to move
the elbow handle as well.
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