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(a) Source image 1. (b) Source image 2. (c) Foreground (red) and
background (blue) pixels.

(d) Initial foreground and
background mask.

(e) Source 1 segmentation:
GammaRGB.

(f) Source 2 segmentation:
GammaRGB.

(g) Source 1 segmentation:
Lab.

(h) Source 2 segmentation:
Lab.

(i) Source 1 segmentation:
Ours.

(j) Source 2 segmentation:
Ours.

Figure 1: Segmentations of the same flower scene under two different illuminants. For (nonlinear) RGB and Lab color spaces, segmentation
parameters for the two images were tweaked individually (optimal parameters for the image pairs were separated by 2 and 5 orders of
magnitude respectively); for our color space, the same parameters were used for segmenting both images.

Abstract

Motivated by perceptual principles, we derive a new color space in
which the associated metric approximates perceived distances and
color displacements capture relationships that are robust to spectral
changes in illumination. The resulting color space can be used with
existing image processing algorithms with little or no change to the
methods.
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1 Introduction

Given the importance of color processing in computer graphics,
color spaces abound. While existing color spaces address a range of
needs, none of them simultaneously capture two notable properties
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required by a large class of applications that includes segmenta-
tion and Poisson image editing [Pérez et al. 2003]. In this work,
we present a new color space designed specifically to address this
deficiency.

We propose the following two color space desiderata for image pro-
cessing:

(1) difference vectors between color pixels are unchanged by re-
illumination;

(2) the `2 norm of a difference vector matches the perceptual dis-
tance between the two colors.

The first objective restricts our attention to three-dimensional color
space parameterizations in which color displacements, or gradients,
can be computed simply as component-wise subtractions. Further-
more, it expresses the desire for these color displacements–the most
common relational quantities between pixels in image processing–
to be invariant to changes in the spectrum of the scene illuminant.
Illumination invariance is useful for applications where processing
is intended to operate on intrinsic scene properties instead of in-
tensities observed under one particular illuminant. For example,
Figure 1 shows that when segmenting an image using usual color
spaces, images that differ only in the scene’s illumination during
capture can require nontrivial parameter tweaking before the result-
ing segmentations are clean and consistent. And even then, the seg-
mentations are not necessarily reliable. Figure 4 illustrates the ex-
treme sensitivity a Poisson image editing algorithm exhibits when
the illuminant of the foreground object does not match the back-
ground’s illumination.

The second condition implies that the standard computational
method of measuring error and distance in color space should match



the perceptual metric used by human viewers.

These desiderata have direct correspondence to widely-studied per-
ceptual notions that possess some experimental support. Desidera-
tum (1) corresponds to subtractive mechanisms in color image pro-
cessing and to human color constancy. Desideratum (2) relates to
the approximate “flatness” of perceptual space.

Subtractive mechanisms refer to the notion that humans perform
spatial color comparisons by employing independent processing per
channel [Kimmel et al. 2002; McCann 2005] and that such per-
channel comparisons take a subtractive form. Physiological evi-
dence for subtraction comes from experiments such as those reveal-
ing lateral inhibition in the retina [Fairchild 2005] and the existence
of double opponent cells in the visual cortex (where each type pro-
vides a spatially opponent mechanism for comparing a select chro-
matic channel) [Palmer 1999].

Color constancy refers to the fact that the perceived color of an
object in a scene tends to remain constant even when the illumina-
tion (and thus the tristimulus data recorded at the retina) is changed
drastically. Color constancy is a surprising feature of the visual
system because the light seen reflected from objects depends on the
full spectrum of the illuminant and the per-wavelength attenuation
of the material. Given a scene with arbitrary illuminant spectra and
material reflectances, there is no reason that constancy should be
even close to possible. Indeed, humans do not have perfect color
constancy, but our color percepts are nonetheless surprisingly sta-
ble [Palmer 1999]. (Sometimes the term “chromatic adaptation” is
used instead to emphasize the inability to achieve perfect constancy
[Fairchild 2005].)

The approximate flatness of perceptual space refers to the rela-
tive empirical success–as evidenced by color spaces such as CIE
L∗a∗b∗ and CIE L∗u∗v∗–in approximating perceptual distance with
Euclidean distance when the Euclidean computation is preceded by
an appropriate nonlinear reparameterization of color space1. There
is ample evidence that perceptual space is unlikely to be exactly flat
[Wyszecki and Stiles 1982], but there is also a fair amount of ev-
idence that a large portion of it may be usefully treated as flat for
many applications [Wyszecki and Stiles 1982; Judd and Wyszecki
1975].

Motivated by graphics applications, we explore the ramifications
of enforcing these desiderata. The fact that both of our desiderata
relate to human perceptual principles for low-level vision suggests
that there is value in addressing each via an early-stage model, such
as the choice of color space as opposed to the inclusion of addi-
tional structures at later stages of visual processing. We point out,
however, that although the connections between our model and hu-
man perception are certainly suggestive, the utility of our approach
does not depend on these assumptions regarding human visual pro-
cessing being true.

To make our approach tractable, we make one further assumption.

(3) materials and illuminants in our scenes are such that the ef-
fect of relighting is well-approximated by multiplying each
tristimulus value (in an appropriate basis) by a scale factor
that does not depend on the materials observed.

This assumption is commonly used in color correction algorithms
[Finlayson et al. 1993]. Its veracity depends only on the spectral
properties of the illuminants, the spectral reflectance of the mate-
rials, and the spectral sensitivities of the sensors (e.g., our cones).
Evidence giving some quantitative support for this assumption can

1This property is called flatness since such compatibility with a Eu-
clidean distance metric implies a lack of Riemannian curvature in the un-
derlying manifold.

be found in [Chong 2008; Chong et al. 2007; Finlayson et al. 1993].
We emphasize that this assumption does not require any additional
assumptions about human color processing.

Assumption (3) also relates to the (generalized) von Kries coef-
ficient rule, which asserts that the brain is able to discount illu-
mination changes by applying the appropriate inverse scale factors
[Fairchild 2005]. Color matching experiments evaluating the gener-
alized von Kries hypothesis are therefore additional (indirect) tests
of this assumption’s veracity [Wyszecki and Stiles 1982].

In this paper, we show that conditions (1)-(3) almost completely
determine the analytical form of the three-dimensional color space
parameterization. There are only a handful of degrees of freedom
in this model, and these can be “fit” using measurements provided
by perceptual difference experiments.

Once our model is fit to perceptual data, we find that Euclidian
distances in our color space better match a standard perceptual dif-
ference dataset than the widely used CIE L∗a∗b∗ and CIE L∗u∗v∗
spaces2. Beyond its matching of perceptual data, the utility of our
approach is supported by its apparent utility for image processing
applications (Figure 1 and Section 5). In particular, we show that
both segmentation and Poisson editing can be made robust to illu-
mination changes simply by re-expressing colors in our color space
prior to processing.

2 Previous work

There has been extensive research on formulating “uniform color
spaces,” or color spaces in which perceptual distances correspond
to Euclidean distances [Judd and Wyszecki 1975; Wyszecki and
Stiles 1982]. The most widely used spaces of this type are the CIE
L∗a∗b∗ and CIE L∗u∗v∗ spaces. Some more recent attempts to pre-
dict perceptual distance modify CIE L∗a∗b∗’s Euclidean formula,
but yield only difference equations, not parameterizations [Sharma
et al. 2005; Luo 2006]. A disjoint effort was carried out by re-
searchers trying to determine a “line element,” or Riemannian met-
ric, for color space [Wyszecki and Stiles 1982; Vos 2006]. Despite
leveraging the more general Riemannian formalism, a couple of
the line elements nonetheless correspond to Euclidean spaces (e.g.,
Helmholtz, Stiles, Bouman-Walraven) [Vos 2006]. The Rieman-
nian metrics do not seem to be in wide use.

A large body of work also surrounds the human visual perception
issues we touch upon. For more on the theories and their experi-
mental assessments, see [Wyszecki and Stiles 1982; Palmer 1999]
and the references therein. Significant research has also focused on
computational aspects such as spatial methods for computing per-
channel gain factors and estimating the illuminant [Kimmel et al.
2002; Finlayson et al. 1993; McCann 2005]. Our approach is ag-
nostic with regards to these methods and largely enables avoiding
such computations altogether. Considerable work has also gone
into investigating the conditions under which models such as the
von Kries coefficient rule can work perfectly [Chong et al. 2007;
Finlayson et al. 1993; West and Brill 1982]. We build upon [Chong
et al. 2007] in section 3.1.1.

In this work, we pursue a functional equations approach to devel-
oping a new color space. This more directly incorporates empirical
data into performing model selection in addition to using data for
parameter estimation [Castillo and Ruiz-Cobo 1992]. Perhaps the
first to apply functional equations to psychophysics was Fechner,

2In this regard, our method does not outperform some color difference
equations such as CIEDE2000 and CIE94. As discussed in Section 4, how-
ever, such equations do not satisfy either of our desiderata, and this limits
their applicability for many graphics applications.



who proposed an explanation of Weber’s Law–a law relating phys-
ical magnitudes of stimuli to perceived intensities [Fechner 1877].
His analysis, however, applies only for scalar judgments such as
“brightness,” not for the space of colors more generally [Luce
1993]. Mathematical psychologists have continued to refine the
use of functional equations, but efforts seem mostly geared toward
other areas of social science [Aczel et al. 2000]. One exception is
the work of Resnikoff, who derived two candidates for the structure
of color space–given a “homogeneity” assumption [Resnikoff 1975;
Resnikoff 1989]. One candidate, Resnikoff points out, is unlikely
to be a model for actual color vision; the other is the Stiles line el-
ement. We start with somewhat different perceptual principles that
have exhibited some quantitative success.

3 A Perceptual Metric

Here we formalize the color space conditions presented in the in-
troduction. Let us denote by ~x the tristimulus values of a sensor
represented in XY Z coordinates. Let us denote by F the 3D color
space parameterization we wish to solve for.

According to our third assumption, when colors are written in some
“appropriate” basis, the effect of relighting is simply a per-channel
multiplication. We represent the fixed change to an appropriate ba-
sis by the matrix B. (In Section 3.1.1, we show how to select an “op-
timal” matrix B–and thus an optimal color basis–using a database of
measured spectral distributions.) Under this assumption, the effect
of relighting can be written as

~x 7→ B−1DB~x, (1)

where D is a diagonal matrix depending only on the illuminants
and not the materials. Under our reparameterization F , then, color
displacements transform as

F(~x)−F(~x′) 7→ F(B−1DB~x)−F(B−1DB~x′). (2)

Desideratum (1) states that displacements are unchanged by relight-
ing. Thus, for all diagonal matrices D, and color vectors ~x and ~x′
we must have

F(~x)−F(~x′) = F(B−1DB~x)−F(B−1DB~x′). (3)

Desideratum (2) states that for any two colors~x and~x′, the percep-
tual distance between them is computed as

d(~x,~x′) = ||F(~x)−F(~x′)||, (4)

where || · || denotes the usual `2-norm.

Given these assumptions, Appendix A proves that the nonlinear
function F of Equation (3) must take the form

F(~x) = A(l̂n(B~x)), (5)

where A and B are invertible 3× 3 matrices and l̂n denotes the
component-wise natural logarithm. The matrix B transforms color
coordinates to the basis in which relighting (best) corresponds to
multiplication by a diagonal matrix, while the matrix A provides
degrees of freedom that can be used to match perceptual distances.

3.1 Parameter Estimation

We first optimize for the matrix B using material and illuminant
spectral data. Matrix A is then estimated using perceptual distance
data.

3.1.1 Estimating the B matrix

To compute the B matrix, we used an approach adapted from
[Chong et al. 2007], which we briefly review here.

Let us consider the relighting assumption of Equation (1). This
is necessarily an approximation, since given scenes with arbitrar-
ily complicated material spectral reflection functions and arbitrar-
ily complicated illuminant spectral densities, such a simple model–
where the D matrix does not depend on the spectral properties of the
material and B is some pre-determined matrix mapping to a fixed
preferred color basis–should not be possible. However, it can be
shown that [Chong et al. 2007]:

• Such a relighting model can in fact work if the collection of il-
luminants and materials contained in scenes satisfies a certain
“rank condition” described below.

• When the rank condition is satisfied by a collection of materi-
als and lights, the B matrix is fixed (up to 3 scale factors).

• A large collection of naturally-occurring materials and lights
can be well-approximated while satisfying the rank condition.

• Given such a dataset, one can numerically solve for a locally-
optimal B matrix.

Both the “rank condition” and the description of the algorithm for
estimating B require an auxiliary definition. Given a database of
reflectance and illuminant spectra ({Ri} and {L j} respectively), the
XYZ color matching functions ({Mk}i=1,2,3) can be used to define
a measurement tensor (3D data block) indexed by reflectance, illu-
minant, and sensor (λ denotes wavelength):

Ti jk :=
∫

Ri(λ )L j(λ )Mk(λ )dλ . (6)

A theorem of [Chong et al. 2007] then states that the relighting
model of Equation (1) holds for the input reflectances and illu-
minants if and only if the measurement tensor is at most rank
three–i.e., the tensor is expressible as the sum of three tensor outer-
products (outer product denoted by ◦):

T =
3

∑
n=1

~rn ◦~ln ◦~mn. (7)

For notational simplicity, let the outer-product vectors {~rn}, {~ln},
and {~mn} correspond to the reflectance, illuminant, and sensor axes
of the measurement tensor respectively. It turns out that such a de-
composition of a rank three tensor into these outer-product vectors
is almost always unique (modulo permutations and scalings).

One can compute the decomposition above for any rank three ten-
sor, and once computed, the three vectors {mn} of the decomposi-
tion give us the columns of B−1. So the desired matrix B is com-
putable by collecting these vectors and inverting them.

When the measurement tensor is not rank three (which is more of-
ten the case), one can first compute the “closest” tensor that is rank
three and then solve for an optimized B matrix via the decomposi-
tion. To jointly determine a close rank three tensor and its decompo-
sition, [Chong et al. 2007] use an alternating least squares strategy
in which the three outer-product vectors associated with each of the
three tensor axes are resolved in turn. In each iteration, the vectors
associated with two of the axes are fixed as constant while the free
vectors are chosen so that Equation (7) best matches the given data
tensor in a least squares sense. The alternating process is repeated
until convergence.

While [Chong et al. 2007] measured error in the XYZ color space,
we used the CIEDE2000 difference equation to measure perceptual
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Figure 2: Color matching functions for cone sensors and effective
sensors with B matrix applied.

error. CIEDE2000 is the latest CIE standard for computing percep-
tual distance and gives the best fit of any method to the perceptual
distance datasets used by the CIE [Luo 2006]. We also constrained
the solution to encompass the entire cone of human visible col-
ors, so that the logarithm of Equation (5) is always well defined.
In our case, our extra constraints (measuring error in CIEDE2000
sense and enforcing that the gamut include the entire human visible
range) makes each step a nonlinear least squares optimization.

We used the SFU dataset for optimizing the B matrix [Barnard et al.
2002]. The database includes eight spectra simulating daylight (as
in [Chong et al. 2007], we excluded fluorescent spectra since there
is some indication that humans exhibit less color constancy under
such lighting conditions). The database also includes 1,995 mate-
rial reflectance spectra, including those of natural objects and paint
chips. For color sensors, we used the CIE 1931 2-degree XYZ
matching functions with Judd 1951 and Vos 1978 modifications
[Wyszecki and Stiles 1982].

Our optimization procedure returned a rank three tensor approxi-
mation in which the colors had a root-mean-squared error of 1.1
CIEDE2000 units (a rough rule of thumb is that 1 CIEDE2000 unit
is about 1 or 2 just noticeable differences). The mapping to our de-
sired color basis for color constancy (assuming input coordinates in
XYZ space) is given by

B =

[
9.465229×10−1 2.946927×10−1 −1.313419×10−1

−1.179179×10−1 9.929960×10−1 7.371554×10−3

9.230461×10−2 −4.645794×10−2 9.946464×10−1

]
. (8)

Figure 2 displays the matching functions of the effective sensors
when the B matrix is used. The cone matching functions are shown
for comparison. Note the “sharpening” of the curves.

3.1.2 Estimating the A matrix

We obtained two perceptual distance datasets for optimizing A. The
RIT-Dupont dataset provides 312 pairs of colors that have been ex-
perimentally determined to be separated by a small and equal per-
ceptual distance [Berns et al. 1991]. The Witt dataset provides both
small and medium distance data for 418 color pairs [Witt 1999].

Instead of optimizing for A directly, we first optimized for the ma-
trix G := AT A. If for each color pair i, we define the displacement
vector ~vi := (l̂n (B ~xi)− l̂n (B ~x′i)) and label its corresponding per-
ceptual distance di, then we can rewrite Equation (4) as:

di(~x,~x′) =
(
~vT

i G~vi

)1/2
. (9)

Since the~vi and di are constants in the optimization, squaring Equa-
tion (9) leaves us with a set of constraints that are linear in the en-
tries of G. Since G must be symmetric, we only have six variables
to solve for. Such an overconstrained linear system is easily solved
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Figure 3: Perceptual error performance of our distance function
against other color metrics. None of the other approaches satisfy
all our desired requirements. For instance, CIEDE2000 and CIE94
do not provide 3D parameterizations, so it is not clear that they can
be used in applications such as Poisson editing. Our metric was fit
to the RIT-Dupont data.

in a least-squares sense. As an aside, we also desire that G be pos-
itive definite; fortunately, our optimization naturally produced such
an optimum, so no additional constraint was necessary.

To recover A from G, we must specify three more degrees of free-
dom (corresponding to rotations). We chose A to align with an
eigenbasis for G. Computing an SVD of G gives us a decompo-
sition of the form

G = UT
ΛU, (10)

where U is a rotation matrix and Λ is diagonal. If we denote the
diagonal matrix whose elements are the square roots of Λ’s by

√
Λ,

we have

A =
√

Λ ·U. (11)

For our purposes, we trained on the RIT-Dupont dataset and tested
on both RIT-Dupont and Witt. The resulting matrix is given by

A =

[
2.707439×101 −2.280783×101 −1.806681
−5.646736 −7.722125 1.286503×101

−4.163133 −4.579428 −4.576049

]
. (12)

In evaluating methods for computing perceptual distance, we were
careful to not penalize uniform scalings of the distances. Rescal-
ing a distance function does not change the color space geome-
try; it corresponds only to a different choice of units (e.g., although
the numbers change depending on whether one uses inches or cen-
timeters to measure spatial distance, such changes do not reflect
geometric differences). For the RIT-Dupont dataset, in which all
distances ought to be the same (without loss of generality, 1), we
rescale computed distances such that the median distance is 1. For
the Witt dataset, which has experimentally determined distances of
varying magnitudes, we choose the rescaling that minimizes the `1
percentage error.

4 Metric Results

Figure 3 shows our metric’s performance on the RIT-Dupont and
Witt datasets compared against other distance metrics. For RIT-
Dupont’s small distance data, our metric performs comparably to
CIE L∗a∗b∗ and CIE L∗u∗v∗. For Witt’s small and medium distance
data, it outperforms both. This suggests that our mapping (F) is



more successful at mapping the geodesics of color space to straight
lines.

The CIEDE2000 and CIE94 difference equations provide the best
predictions of perceptual distance; however, these difference equa-
tions do not come with a 3D color space parameterization, so it
is unclear whether they can be plugged into applications such as
Poisson image editing. Even assuming these difference equations
could be applied, the complexity of their formulas makes them
less amenable to efficient computation, so many applications will
likely benefit from simpler models that may sacrifice some of the
accuracy. The work of [Sharma et al. 2005] also points out that
CIEDE2000’s fit comes at the cost of other desirable features such
as the continuity of color space.

5 Applications

By transforming the tristimulus values of an image according to
Equation (5), one obtains color descriptors that are (approximately)
invariant to illumination. In this section we show that we can take
advantage of these (approximately) illumination-invariant color de-
scriptors to produce algorithms that operate on the “intrinsic image”
instead of working directly on RGB values. We focus in particular
on segmentation and Poisson editing, although the same ideas can
be applied to other visual tasks such as feature tracking and texture
synthesis.

5.1 Segmentation

The objective of segmentation is often to separate a foreground ob-
ject from background. If a segmentation algorithm is truly selecting
“object,” then its segmentation should be invariant to changes in il-
luminant spectrum. If we assume that our world is (approximately)
consistent with our relighting assumption (expressed in Equation
(1)), then color differences between neighboring pixels are invari-
ant to illumination changes when computation is done in our co-
ordinate system. Thus any segmentation algorithm that is based
on color differences (gradients) between neighboring pixels will be
(approximately) unaffected by global illumination changes.

We tested such illumination invariance using iterations of a geo-
metric active contour algorithm as implemented by GAC++ [Papan-
dreou and Maragos 2007]. Given a “hyperspectral image” (one pos-
sessing captured reflectance spectra for each pixel) from the dataset
provided by [Foster et al. 2004], and daylight illuminants provided
by [Barnard et al. 2002], we rendered the hyperspectral image un-
der two different illuminants to produce the input images shown in
Figures 1(a) and 1(b). Since the segmentation algorithm required
an estimated mean color for foreground and background, we chose
arbitrary representative pixels for each (Figure 1(c)). We also pro-
vided the rough initial guess shown as a foreground/background
mask (Figure 1(d)).

For each input image, we ran the segmentation algorithm in
gamma-corrected RGB space (GammaRGB), CIE L∗a∗b∗ space
(Lab), and our perceptual color space (Ours). The only free pa-
rameter to the segmentation algorithm is a constant controlling the
discount factor for large gradients. For each run of the algorithm in
gamma-corrected RGB space and CIE L∗a∗b∗ space, we manually
tweaked the parameter to give the cleanest and most consistent seg-
mentation between the light and dark image pairs. For the gamma-
corrected RGB space, the optimal parameters were separated by
two orders of magnitude. For the CIE L∗a∗b∗ space, the optimal
parameters were separated by five orders of magnitude. When run-
ning the algorithm in our color space, we set the parameter once
for one of the images, and ran the segmentation using the same pa-
rameter value for the other image (doing so for the other spaces

caused the algorithm to fail to even return an answer). The experi-
ments showed that segmentation was relatively robust to illumina-
tion changes when run in our color space. Our hope is that such an
approach, along with other methods, may help remove the need for
manual tweaking of segmentation parameters.

5.2 Poisson Image Editing

Poisson image editing addresses the problem of deleting a portion
of some image and filling it in using data from another source image
[Pérez et al. 2003]. We would like the algorithm to be insensitive
to the illumination used for the inserted object. Once again, in our
coordinates, color gradients are (approximately) unaffected by re-
illumination. Thus, a Poisson algorithm which only uses the color
gradients from its insertion source and works in our coordinates will
be approximately invariant to the inserted element’s illumination.

Let us denote the image being edited as I, and its damaged or
masked out region by Ω. Let us denote the source image used to
fill in Ω by J. In filling in Ω, our goal is to preserve the perceived
color relations between the pixels in J as much as possible. This
suggests that we solve the following problem [Pérez et al. 2003]:

min
I

∫
Ω

||∇I−∇J||2 dA, subject to I being fixed on ∂Ω. (13)

The Euler-Lagrange equations give us the following conditions:

4Ii =4Ji, i = 1, ...,# color components. (14)

Figure 4 demonstrates a typical Poisson edit in which three objects
that have been captured under different environmental conditions
are inserted into a single scene. We show comparisons with results
derived from solving Equation (14) in various other color spaces:
gamma-corrected RGB (GammaRGB), linear RGB (LinearRGB),
log of linear RGB (LogRGB), IPT [Ebner and Fairchild 1998],
CIECAM02 [Moroney et al. 2002; Chalmers et al. 2007], and CIE
L∗a∗b∗ (Lab).

We also compare against the related method of [Georgiev 2006]
(Ratio), which instead solves

4
(

Ii

Ji

)
= 0, i = 1, ...,# color components, (15)

where I and J are expressed in linear RGB coordinates.

To demonstrate performance in a case where ground truth is avail-
able, we also experiment with the (somewhat contrived) example in
which the object to be inserted is actually coming from a version
of the original image in its original location, the only difference be-
ing that this source image is captured under different illumination
conditions.

The experiment is as follows: render a hyperspectral image under
two different illuminants (as in Section 5.1); in one image (denoted
by I above), excise data in some region (denoted by Ω); use the
other image (denoted by J) along with I’s excision mask to provide
source data for filling in Ω. The output of each algorithm can then
be compared against the original image I before the data excision.
A perfect algorithm is one that produces exact matches.

We ran the experiment for a couple different hyperspectral images
and different pairs of illuminant spectra. Figure 5 shows one of the
runs. These images have been designed for display on a monitor
calibrated with a gamma of 2.2 and D65 white point. Ratio and Lo-
gRGB were both able to handle mild forms of illumination change
because they account for multiplicative scalings of linear RGB.



(a) Original image. (b) Poisson experiment. (c) LinearRGB. (d) GammaRGB. (e) CIECAM02.

(f) IPT. (g) Lab. (h) LogRGB. (i) Ratio. (j) Ours.

Figure 4: Three objects are inserted into a scene by running Poisson image editing in various color spaces.

(a) Ground truth image. (b) Image to fix. (c) Data source for the
repair.

(d) LinearRGB. (e) GammaRGB.

(f) LogRGB. (g) Lab. (h) Ratio (small threshold). (i) Ratio (larger threshold). (j) Ours.

Figure 5: Filling in a damaged image using data from an image with different illumination conditions.

However, their implicit use of the RGB basis for von Kries map-
pings and failure to use perceptual weightings on the RGB chan-
nels led to some noticeable artifacts for more extreme illumination
changes. In Figure 5, we see both suffer from taking the logarithm
or dividing by a small value. Some of the problems in Ratio were
ameliorated by raising the min-value threshold (for algorithm de-
tails, see [Georgiev 2006]). The threshold lower bounds the darks
in J, and when set too high causes noticeable chromaticity shifts
(in particular, note the discontinuous green chromaticity shift on
the bush on the right in Figure 5(i) and the excessive yellowness
added to the flowers on left). In Figure 5, the threshold for the two
Ratio images correspond to 10 gamma-corrected RGB units and 20
units respectively. Lab generally outperformed GammaRGB. Lin-
earRGB always performed worst. IPT and CIECAM02 performed
very similarly to CIE L∗a∗b∗ in all our experiments, so we omit
showing their outputs in Figure 5.

6 Conclusions and Future Work

We have presented a new color space that endows image processing
algorithms with some robustness to illumination change. The asso-
ciated metric also matches the Witt perceptual difference dataset
better than CIE L∗a∗b∗ and CIE L∗u∗v∗ (and performs comparably

on RIT-Dupont), but is equally easy to use. We have also drawn
some connections between our desiderata and various human per-
ceptual principles. It would be interesting to look for further per-
ceptual correspondences. For instance, one wonders to what extent
the deviation from perfect color constancy in humans can be pre-
dicted by the use of our color space.

With regards to applications, continued acquisition of color con-
stancy and perceptual difference datasets (perhaps with more satu-
rated colors as well), and continued search for even better optima
based on these datasets, may further improve our metric’s predic-
tive ability. We note that if only illumination invariance is desired,
much of the invariance comes from the combination of using loga-
rithms and choosing a B matrix such that the implied color gamut
tightly includes the full range of human visible colors (larger than
typical RGB working space gamuts but smaller than the implied
cone gamut).

References

ACZEL, J., FALMAGNE, J.-C., AND LUCE, R. D. 2000. Func-
tional equations in the behavioral sciences. Math. Japonica 52,
3, 469–512.



BARNARD, K., MARTIN, L., FUNT, B., AND COATH, A. 2002.
A data set for colour research. Color Research and Application
27, 3, 147–151.

BERNS, R. S., ALMAN, D. H., RENIFF, L., SNYDER, G. D.,
AND BALONON-ROSEN, M. R. 1991. Visual determination of
suprathreshold color-difference tolerances using probit analysis.
Color Research and Applications 16, 5, 297–316.

CASTILLO, E., AND RUIZ-COBO, M. R. 1992. Functional Equa-
tions and Modelling in Science and Engineering. CRC.

CHALMERS, A. N., SOLTIC, S., AND JAMMALAMADAKA, R.
2007. A case for a ciecam02 colour appearance space. Manukau
Dept. ECE Conf. Papers.

CHONG, H. Y., GORTLER, S. J., AND ZICKLER, T. 2007. The
von kries hypothesis and a basis for color constancy. ICCV .

CHONG, H. Y. 2008. Geometric methods in perceptual image
processing. Harvard University PhD Thesis (May).

EBNER, F., AND FAIRCHILD, M. D. 1998. Development and
testing of a color space (ipt) with improved hue uniformity. Proc.
6th Color Imaging Conf., 8–13.

FAIRCHILD, M. D. 2005. Color Appearance Models, 2nd ed.
Wiley-IS&T.

FECHNER, G. T. 1877. In Sachen der Psychophysik. Leipzig.

FINLAYSON, G., DREW, M., AND FUNT, B. 1993. Diagonal
transforms suffice for color constancy. In ICCV93, 164–171.

FOSTER, D. H., NASCIMENTO, S. M. C., AND AMANO, K. 2004.
Information limits on neural identification of coloured surfaces
in natural scenes. Visual Neuroscience 21, 331–336.

GEORGIEV, T. 2006. Covariant derivatives and vision. In ECCV
’06, Springer-Verlag, Part IV, 56–69.

JUDD, D. B., AND WYSZECKI, G. 1975. Color In Business, Sci-
ence, and Industry. John Wiley and Sons.

KIMMEL, R., ELAD, M., SHAKED, D., KESHET, R., AND SO-
BEL, K., 2002. A variational framework for retinex.

LUCE, R. D. 1993. Let’s not promulgate either fechner’s erroneous
algorithm or his unidimensional approach. Behavior and Brain
Sciences 16, 155–156.

LUO, M. R. 2006. Colour difference formulae: Past, present and
future. CIE Expert Symposium.

MCCANN, J. J. 2005. Do humans discount the illuminant? Proc.
SPIE 5666, 9–16.

MORONEY, N., FAIRCHILD, M. D., HUNT, R. W. G., LI, C.,
LUO, M. R., AND NEWMAN, T. 2002. The ciecam02 color
appearance model. In Color Imaging Conference, 23–27.

PALMER, S. E. 1999. Vision Science: Photons to Phenomenology.
MIT Press.

PAPANDREOU, G., AND MARAGOS, P. 2007. Multigrid geometric
active contour models. IEEE Trans. on Image Processing 16, 1
(Jan.), 229–240.
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A Deriving the Functional Form

In the notation of Equation (3), define the displacement vector
V (~x,~x′) := F(~x)−F(~x′). V satisfies the following property (reflect-
ing the Euclidean nature of our space): ∀~x,~x′,~x′′,

V (~x′′,~x′)+V (~x′,~x) = F(~x′′)−F(~x′)+F(~x′)−F(~x) (16)
= V (~x′′,~x). (17)

Meanwhile, Equation (3) states that V (~x,~x′) is unchanged if both
arguments are transformed by B−1DB. Define ~c := B~x and ~c′ :=
B~x′. Then since equation (3) holds for all diagonal matrices D,
let us choose the diagonal matrix whose diagonal elements are the
reciprocal of the components of~c′. This gives us: ∀~x,~x′,

V (~x,~x′) = V (B−1DB[x1,x2,x3]T ,B−1DB[x′1,x
′
2,x

′
3]

T ) (18)

= V (B−1
[

c1

c′1
,

c2

c′2
,

c3

c′3

]T
,B−1[1,1,1]T ). (19)

Since B−1 and B−1[1,1,1]T are just fixed constants, define:

W (
c1

c′1
,

c2

c′2
,

c3

c′3
) := V (B−1

[
c1

c′1
,

c2

c′2
,

c3

c′3

]T
,B−1[1,1,1]T ). (20)

The function W (c1/c′1,c2/c′2,c3/c′3) inherits the additive property
of Equations (16)-(17). In other words:

W (
c′′1
c′1

,
c′′2
c′2

,
c′′3
c′3

)+W (
c′1
c1

,
c′2
c2

,
c′3
c3

) = W (
c′′1
c1

,
c′′2
c2

,
c′′3
c3

). (21)

If we make the variable substitutions ui = c′′i /c′i, vi = c′i/ci, then the
additive property becomes the set of functional equations:

Wi(u1v1,u2v2,u3v3) = Wi(u1,u2,u3)+Wi(v1,v2,v3), i = 1,2,3. (22)

The only non-constant and continuous solutions (defined for posi-
tive ui and vi) are (see [Castillo and Ruiz-Cobo 1992]):

Wi(u1,u2,u3) =
3

∑
j=1

ai j lnu j, ai j ∈ R. (23)

Substituting back into Equation (20) yields the parameterization F :

F(~x) = A(l̂n(B~x))+~k, (24)

where A and B are invertible 3 × 3 matrices and l̂n denotes
component-wise natural logarithm. The vector ~k might as well
be taken to be zero since the range of F is an affine space (only
displacements, their magnitudes, and higher order descriptors have
illumination-invariant meaning).


