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Abstract— We present a novel approach to localization of sensors 
in a network given a subset of noisy inter-sensor distances. The 
algorithm is based on “stitching” together local structures by 
solving an optimization problem requiring the structures to fit 
together in an “As-Rigid-As-Possible” manner, hence the name 
ARAP. The local structures consist of reference “patches” and 
reference triangles, both obtained from inter-sensor distances. 
We elaborate on the relationship between the ARAP algorithm 
and other state-of-the-art algorithms, and provide experimental 
results demonstrating that ARAP is significantly less sensitive to 
sparse connectivity and measurement noise. We also show how 
ARAP may be distributed. 
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I.  INTRODUCTION 
Sensor networks are a distributed collection of small de-

vices, capable of a limited amount of local processing and 
wireless communication [19]. They are drawing more and 
more attention for use in a variety of applications, such as envi-
ronment monitoring, military surveillance, smart places etc 
[12]. In many typical applications, sensors are deployed over a 
physical area, sometimes at random, without any prior knowl-
edge of their locations. Lacking GPS components, a sensor 
cannot know its final location in the arena, which may be nec-
essary for it to be useful. Thus autonomous computation of the 
spatial coordinates of the sensors, based on just the limited 
information available to the sensors, is an important practical 
problem, known as the localization problem. 

One useful source of information for the localization prob-
lem is inter-sensor distances. Two sensors with a communica-
tion link between them may be able to measure the distance 
between them and use it for localization. This type of informa-
tion is the typical input to a localization algorithm. The com-
munication links between the sensors may be modeled as a 
sensor graph, and the distances measured along the edges of 
this graph are called the measurement graph. The coordinates 
of the sensors computed during localization are sometimes 
called an embedding, realization or layout of the measurement 
graph. 

More formally, this paper treats the following problem: 
Given a set of sensors with unknown spatial distribution, and a 
mechanism to measure the distances between a sensor and its 

nearby (neighbor) sensors, determine the coordinates of all the 
sensors through local sensor-to-sensor communication.  

The localization problem is NP-Hard [16,20], i.e. there is no 
known efficient algorithm that is guaranteed to find the correct 
embedding (or even an approximate solution) for all measure-
ment graphs. This is true even when the measurement graph is 
generically globally rigid, i.e., when the coordinates are com-
pletely determined, up to a rigid transformation, from the 
measured distance data. In this case the embedding is called 
globally rigid. Note that generic global rigidity (assuming that 
the embedding is also “generic”) is a property of the graph 
structure, not of the actual distance measurements [8]. Only if 
the measurement graph is known to belong to a special sub-
class of globally rigid graphs, such as trilateration graphs [4], 
efficient localization may be provably possible. 

Despite the inherent difficulty in the general case, the impor-
tance of this problem has led to many heuristic and numerical 
algorithms for its approximate solution. The realistic, and most 
challenging, scenario is when the measurement graph is sparse 
and noisy. This means that there is only small amount of unre-
liable information available. Many existing localization algo-
rithms are extremely sensitive to this and degrade very quickly 
when presented with these types of inputs. This paper presents 
an algorithm which is relatively easy to implement, can be dis-
tributed among the sensors, and, most important, is extremely 
robust, even when the measurement graph is sparse and noisy. 

II. RELATED WORK 
Assume the sensor network is modeled by a graph G = 

(V={1,..,n}, E), such that for every edge (i,j)∈E we know the 
(noisy) distance dij between sensors i and j. We assume, with-
out loss of generality, that the distances are always symmetric, 
so dij=dji. This can be achieved by requiring neighboring sen-
sors to reach an agreement about their distance (e.g. by averag-
ing dij and dji). We would like to generate a two-dimensional 
embedding P = (p1,..,pn) that realizes all known distances. This 
embedding can be formally characterized as the minimum of 
the stress function:  

 ( )2
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The stress function and its variants are widely used in prob-
lems in distance geometry and in statistics, where distances 
measure some sort of affinity between subjects. When all pair-
wise distances are available, it is possible to easily minimize 
the strain function - a function very similar to stress. Strain is a 
convex function, thus may be minimized using Classical Multi-
Dimensional Scaling (MDS) [2], which, in practice, is an ei-
genvector computation. The situation changes dramatically 
when only a subset of the pairwise distances is available. Stress 
is a non-convex function, hence, in general, we cannot find its 
global minimum efficiently, and slow iterative methods must 
be employed. The main phenomenon observed in the (subop-
timal) solutions is that of foldovers, where entire pieces of the 
embedding fold over on top of others, while still realizing well 
most of the measurement graph.  

In the general case, stress may be minimized using iterative 
stress majorization, also called the SMACOF algorithm [2]. 
Majorization is a modern optimization technique achieving 
better results than applying traditional optimization methods, 
such as gradient descent, to the stress function. Although all 
techniques will eventually get stuck in local stress minima, and 
require a good foldover-free initial embedding to start from [9], 
stress majorization is faster and seems to “jump over” many 
local minima to a generally better solution.  

In an attempt to depart from the cumbersome (and slow) 
global optimization strategies, Moore et al. [13] describe a lo-
calization algorithm which takes advantage of the special na-
ture of the connectivity of sensor network measurement graphs. 
Since each sensor typically can communicate only with its lo-
cal neighborhood, the connectivity tends to be local, with only 
short edges. These graphs can even be mathematically modeled 
as “disk graphs”, where two sensors are connected if (and only 
if) the distance between them is less than some parameter.  
This characteristic of sensor network connectivity implies that 
the connectivity within small neighborhoods is typically dense, 
even frequently making those neighborhoods generically glob-
ally rigid. Thus Moore et al. [13] propose an incremental algo-
rithm which attempts to first localize only small “patches” of 
the network. Each such patch is a set of four sensors forming a 
rigid quadrilateral, which is localized using a procedure called 
“trilateration” and then improved by running stress minimiza-
tion on that patch. Given one quad which has been localized, 
another quad is found which has some sensors in common with 
the first. This is then laid out relative to the first by applying 
the best possible rigid transformation between the two. In such 
a manner, a sequence of quads is laid out in breadth-first order 
until no more sensors can be localized.  

While a very promising approach, the algorithm of Moore 
et al. will localize only those sensors contained in a trilateraliz-
able component of the network. The algorithm will not produce 
anything useful for the other sensors. More unfortunately, there 
exist generically globally rigid graphs that are not trilateraliz-
able. Goldenberg et al. [6] describe a method to find generi-
cally globally rigid subgraphs (on which they run an MDS ap-
proach), and thus avoid contaminating their answer with un-
derdetermined portions of the network. 
 

A similar “patching” algorithm was described by Shang 
and Ruml [17]. However, they localize an individual patch by 

first computing all pairwise shortest paths (in the measurement 
graph) between sensors in the patch. Classical MDS is then 
applied to these distances to yield an initial embedding, which 
is subsequently improved by stress minimization. Similarly to 
Moore et al. [13], the patches are “stitched” together incremen-
tally in a greedy order by finding the best affine transformation 
between a new patch and the global embedding. A post-
processing stage of the algorithm further improves the embed-
ding by minimizing the stress energy of the complete graph. 
These incremental algorithms seem to be sound, but, unfortu-
nately, like any other incremental algorithm, may accumulate 
error indefinitely, especially when the measurement graph is 
very noisy. 

 The PATCHWORK algorithm of Koren et al. [11] solves 
the error accumulation error problem which may affect the 
methods of Moore et al. [13] and Shang and Ruml [17]. It also 
first localizes small patches of sensors. However, instead of 
then gluing them together incrementally, and possibly accumu-
lating error in the process, it applies a global process which 
attempts to map the patches to a global coordinate system via 
per-patch affine transformations. Since the patches overlap, this 
involves solving a linear least-squares problem in order that the 
transformations agree well on the locations of sensors they 
have in common. Koren et al. [11] observe that using affine 
transformations between each patch and the global coordinate 
system, may be interpreted as affine relationships between 
patches. Some algebraic manipulation shows that 
PATCHWORK reduces to a method very similar to dimension 
reduction methods [3,15], used in machine learning. 

 A more recent approach of Singer [18], called Locally-
Rigid Embedding (LRE), makes an explicit connection be-
tween localization and the machine learning technique of Lo-
cally-Linear Embedding (LLE). LRE tries to preserve the local 
affine relationships, present within patches, in the global coor-
dinate system. Because of the overlap between patches, this 
imposes affine relationships between patches. A linear system 
is set up, each sensor contributing one equation relating its lo-
cation to those of its neighbors. Solving this system results in 
an embedding of all sensors, from which a global affine trans-
formation must be removed. 

The method we propose here, called As-Rigid-As-Possible 
(ARAP) belongs to the same family as PATCHWORK and 
LRE. We also start off by localizing small patches in a very 
similar manner. However, instead of then embedding them in a 
global coordinate system using affine mappings, we embed 
them using rigid mappings. Here too, the overlap between 
patches constrains the mappings. Using rigid mappings has the 
advantage of preserving better the local relationships between 
patches, but has the disadvantage of resulting in a (sparse) non-
linear system of equations. Fortunately, this non-linear system 
may be solved rather simply and efficiently using a two-phase 
alternating least-squares method. Along the way, we show 
how to improve LRE and PATCHWORK at just a slightly 
more expensive price of solving a larger (but still sparse) linear 
system, which we call As-Affine-As-Possible (AAAP). In fact, 
we use AAAP as the starting point for the iterations of ARAP. 
Experimental results show that ARAP is more robust to spar-
sity and noise in the measurement graph than all its predeces-
sors. So, while ARAP might seem to be a straightforward ex-
tension of LRE, it provides a very large increase in perform-
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ance in return for a very small increase in computational com-
plexity. 

III. THE ARAP ALGORITHM OVERVIEW 
A sensor network can be modeled as a measurement graph 

G = (V={1,..,N}, E), where the sensors are treated as the nodes 
of the graph, and edge (i,j) ∈E is associated with the distance 
dij measured between sensors i and j. We denote by N(i) = 
{j:(i,j)∈E }∪{i} the set of sensors connected to sensor i, and 
their number by Ni. Sensor i has no prior knowledge about its 
location, and knows only the distances to its neighbors in N(i). 
We would like to find a localization of these sensors in the 
plane, i.e., P = {p1 ,.., pn}, where pi∈ℜ2, such that ||pi - pj|| is as 
close as possible to the given dij, essentially a global minimum 
of the stress energy (1). 

Since a triangle is generically globally rigid, any sensor i, 
along with its two neighbors j and k, whose accurate inter-
sensor distances dij, djk, dki are known, may be uniquely posi-
tioned (or localized) in an arbitrary coordinate system, up to a 
rigid transformation. Call a triplet of sensors for which this data 
is given an available triangle, and its localization a reference 
triangle. Number the available triangles by t=1,..,T, and denote 
their localizations in the local coordinate systems by Qt = {qt

i, 
qt

j, qt
k}. 

More complicated graphs, such as the subgraph of G in-
duced by N(i), are not necessarily generically globally rigid, 
even if G is. And even if they are generically globally rigid, 
they still may not be localizable using known methods. But 
they may be, if the subgraph contains sufficient edges. Thus we 
may attempt to localize the sensors in N(i) in an arbitrary coor-
dinate system, again up to a rigid transformation. The localiza-
tion of N(i) is called a reference patch, and denoted by Qi = 
{qi,qi1, qiNi}. See Figure 1 for an illustration of reference trian-
gles and patches. 

The spirit of our algorithm is to construct as many of these 
reference triangles and reference patches as possible, and 
“stitch” them together in a global coordinate system to localize 
the entire measurement graph. The latter is done by mapping 
each patch to the global coordinate system using a rigid trans-
formation. Both phases of the algorithm try to respect the mea-
surement graph as much as possible, thus minimizing the stress 
energy. 

 
Figure 1.  Possible reference patch and triangles associated with a given 
vertex (red dot) in a measurement graph. Solid lines are edges in the 
measurement graph (i.e. the length of the edge is known). Dashed lines are 
edges not in the measurement graph (i.e. the length of the edge is unknown). 

IV. REFERENCE TRIANGLE AND PATCH LOCALIZATOIN 
Reference triangles can be obtained easily. If the distances 

between the three nodes i, j and k are given, they have a stable 
localization in the plane up to a rigid transformation: a transla-
tion, rotation and reflection (sometimes called “flip”). This 
follows from elementary geometry. 

Localizing a patch N(i) is more complicated. The distances 
between i and the other sensors in N(i) are all known. Only 
some of the distances between the neighboring sensors are 
known. We use the three-stage method of PATCHWORK [11], 
which proceeds as follows. 

Estimating missing distances. We estimate the distance djk for 
all (j,k)∉E, j,k∈N(i). From the triangle inequality, we obtain an 
upper bound Bjk on djk, and from the disk graph assumption a 
lower bound bjk on djk: 

 
{ }

:( , ) ,( , )
min { }

max max{ },max{ } .

jk jh hkh j h E h k E

jk jh hkh h

B d d

b d

∈ ∈

d

= +

=
 

Then, the estimate for djk is 
 ( )jk jk jkd b B / 2.= +  

Classical MDS. After estimating all the missing distances be-
tween sensors in N(i), the reference patch can be obtained by 
Classical MDS [2]. 
 
Stress majorization. This step is to improve the embedding of 
the reference patch by using only the known distances be-
tween the sensors in N(i). It involves iteratively applying the 
following update rule, for each i∈N(i): 

( )
( )

1 ( )inv || ||i j ij i j i j
j N ii

q q d q q q
N ∈

q⎡ ⎤← + − −⎣ ⎦∑  

where 

  1/ 0
inv( )

0 0
x x

x
x
≠⎧

= ⎨ =⎩ .

V. RIGID ALIGNMENT 
Once the reference triangles and patches are obtained, it 

remains to align (“stitch”) all the triangles and patches together 
into one coherent layout. If we assume that we have properly 
localized the triangles and patches up to a rigid transformation, 
ideally the alignment should allow only rigid transformations 
between the patches and the global coordinate system. Refer-
ence triangles and patches undergo the same “stitch” operation, 
so we give a detailed derivation of the rigid alignment for ref-
erence patches, which is applicable also to the reference trian-
gles. 

Denote by the 2×Ni matrix Qi = (qi, qi1,.., qiNi), where qi = 
(qi

x, qi
y)T are the sensor locations in the reference patch N(i) 

and by P = (p1 ,.., pN), a 2×N matrix, where pi = (pi
x, pi

y)T is the 
global localization of the i’th sensor.  Note that we assume 
that the location vectors are 2D column vectors.We would like 
to find a P such that all the reference patch localizations relate 
to it via rigid transformations, i.e. find also Ri and Ti for Qi, 
such that: 

(a) (b) 
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Pi is the localization of N(i) induced by P, Ri is a 2×2 rigid 
transformation matrix, and Ti is a translation vector.  
 
To eliminate the translational component Ti immediately, we 
work only with vector differences between the coordinates of 
the sensors in Ni and the coordinates of the i’th sensor. Thus, 
to perform localization of the entire sensor network, we have 
to solve the following optimization problem simultaneously 
for P (from which all Pi are induced), and all the Ri (one for 
each patch): 

2
1 , 1

( , ,.., ) arg min :
i

N
T

N i i i iFP i

P P Q
=

⎧= −⎨
⎩
∑R

R R R R R Ii
⎫= ⎬
⎭

  (3) 

where || ⋅||F is the Frobenius matrix norm, and the Pi and Qi are 
the appropriately translated vectors. Once this cost function is 
minimized, we may discard the Ri. 

 
We now make two key observations: 
 
1. Given Pi and Qi, (3) may be solved separately (and locally) 
for each Ri. 

{ }2arg min : T
i i i F

P Q= −
R

R R R =R I

T

               (4) 

This is the least-squares version of (2), since it will not always 
be possible to find a Ri satisfying (2) exactly, as the system 
may be overconstrained. Sadly, (4) is a non-linear least 
squares problem, because of the orthogonality constraint on Ri. 
Fortunately, it still has a relatively simple solution. Solving (4) 
for the best rigid matrix Ri for each N(i) is an instance of the 
Rotation Orthogonal Procrustes Problem, which can be solved 
by Procrustes analysis [10]. A closed form solution is Ri = 
ViUi

T, where Ui and Vi are the orthogonal components of the 
Singular Value Decomposition (SVD) [7,14] of QiPi

T: 
 

  (5) T
i i i i iQ P U V= Σ

 
2. If all Ri are given, then the remaining unknown P can be 
easily obtained by solving a quadratic optimization problem: 

2

1
arg min : is induced by

n

i i i iFP i
P P Q P P

=

⎧
= −⎨

⎩
∑ R ⎫

⎬
⎭

  (6) 

By setting the gradients to zero, we obtain the following 
2N×2N linear system of normal equations in the (x and y) com-
ponents of P: 

 ( ) ( )

1( ) ( ) (
2

1, 2,...,

i j i i ij j ji j
j N i j N i

)p p q q q

i N
∈ ∈
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=

∑ ∑ R R q ⎤⎦  (7) 

These two observations mean that we can solve (3) using a 
two-phase Alternating Least-Squares (ALS) method: In the 
first local phase, P is assumed to be fixed, and we solve (4) for 
each of the Ri. In the second global phase, all the Ri are as-
sumed to be fixed, and we solve (6) for P. 

We call the use of the ALS technique to minimize (3) the 
“As-Rigid-As-Possible” (ARAP) localization algorithm. Since 
the entries of the coefficient matrix of (7) depend only on the 
reference patch, this matrix is a sparse matrix which is fixed 
throughout ARAP. Thus we may pre-factor the matrix, and 
reuse the factorization to efficiently solve (7) with a different 
left-hand side at each iteration. The observant reader may rec-
ognize this matrix as the combinatorial Laplacian matrix of the 
measurement graph [1], and (7) as the celebrated Poisson equa-
tion on a graph [14]. 

To run ARAP, we need an initial localization which the 
ARAP will refine as it alternates through the two phases. We 
describe how to do this in the next section. 

A. AAAP Localization 
At this point we make another key observation. 

 

If the measurement graph is connected and generically globally 
rigid and all patches have been correctly localized (up to a rigid 
transformation), then it is possible to correctly localize the en-
tire graph (up to a global rigid transformation) by solving (3), 
while allowing Ri to be a similarity, or even affine, transforma-
tion.  

  

This observation is non-trivial. It relies on the concept of 
stress matrices in rigidity theory, and is implied by the main 
result of Gortler et al. [8] that generic global rigidity of a graph 
implies the existence of a symmetric equilibrium stress matrix 
of co-rank 3 (and no more) for the graph.  

This observation, surprising at first glance, becomes less 
surprising when we realize that most of the localization work 
has already been done in the reference patch localization, and 
the fact that the graph is generically globally rigid implies that 
these localizations essentially determine the global localization. 
Thus relaxing the conditions on Ri do not really allow the 
stitching stage to misbehave. The advantage of relaxing the 
condition on Ri is that now (3) becomes a single global linear 
system in the parameters of Ri and P, so may be solved in “one 
shot”, as opposed to the iterative ARAP. In fact, the resulting 
per-patch affine transformations will probably be all rigid 
transformations composed with a common global affine trans-
formation. There is, however, one caveat: The global localiza-
tion is unique only up to a global transformation taken from the 
relevant family used: similarities or affine. In particular, this 
means that (3), without the condition on Ri, will be homogene-
ous, thus admit the trivial solutions P = 0 and Ri = 0 for all i. 
To avoid this, either a small number of “anchored” sensor posi-
tions must be known in advance, and these “pinned down” 
when solving the system, or the linear system can be solved as 
an eigenvector problem, which effectively factors out the null-
space. In addition, the global transformation can be “factored 
out” (up to a rigid transformation) in a postprocessing stage. 
This is done by comparing the inter-sensor distances of the 
result with the input measurement graph and finding the best 
transformation that minimizes the distortion of these values. 

To compute an initial localization, we solve (3) when Ri are 
required to only be affine transformations. If we parameterize 
Ri as follows: 
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this results in a quadratic optimization problem with un-
knowns pi = (pi

x, pi
y)T, ai, bi, ci and di, whose normal equations 

are: 

  (9) 
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which is linear (and homogeneous) in the variables. 
 
We call this algorithm the As-Affine-As-Possible (AAAP) 
localization procedure. 
 

Should we want to restrict the transformations Ri to belong 
to the class of similarities, this would impose the additional 
constraints ai = di and ci = -bi, which are still linear, as op-
posed to imposing that Ri are rigid transformations, which 
would additionally imply that ai

2+bi
2 =1, a non-linear equation. 

 
The observant reader might ask why not solve (3) for Ri 

restricted to the family of similarities, since the system would 
still be linear, more compact, and closer to the desired class of 
linear transformations – the rigid ones ? The answer is that, 
surprisingly, affine transformations are more suitable, since 
they also allow reflections, which similarities do not allow. 
These reflections are crucial for the stitching process, since we 
have no information on the orientation of patches, and their 
reference localizations must be allowed to reflect (“flip”) if 
needed. 

 
It is relatively simple to see that our initial AAAP localiza-

tion procedure is quite similar to the PATCHWORK method 
of Koren et al. [11], but a little more general. The interested 
reader is referred to Section 3.2 of [11] for details. We have 
already stated that in a noiseless scenario this method would 
suffice. However, as we shall demonstrate later, in a realistic, 
noisy, scenario, the method degrades rather quickly. Koren et 
al. [11] compensate for this by applying standard stress ma-
jorization in a post-processing step, but this is quite slow, and 
has limited effect. Thus AAAP suffices only as an initial em-
bedding for ARAP. 

B. A Distributed Solution 
order for a localization algorithm to be practical in a real 

scenario, the algorithm must be distributable, meaning that it 
can be computed on the sensor network through exchange of 
information between a sensor and its immediate neighbors only. 
This is the case for our ARAP algorithm. Obviously, reference 
patch computation is local, as is the local stage (4). The global 
linear systems, solved during the AAAP initialization (9) and 
the global phase (7), are sparse. The associated matrices have 
non-zero values only between nodes and their immediate 
neighbors, thus can be solved using a fully distributed version 
of the well-known iterative Gauss-Seidel method [14,21]. 

VI. EXPERIMENTAL RESULTS AND COMPARISON 
We now present the results of our ARAP approach applied 

to some sample inputs. As done by previous authors, we gener-
ated synthetic inputs on 200 points distributed uniformly within 
2D regions of different shapes, endowed with the connectivity 
of a “disk graph”, meaning that all pairs of sensors closer than 
a parameter r are connected. We used two regions: a simple 
square, and a non-convex C-shaped region, and three different 
values of r, corresponding to sparse, medium and dense graphs, 
whose average number of neighbors is 4, 5 and 6, respectively. 
The more dense the graph, the more localizable it should be. 
See Figures 2 and 3. ARAP converged in less than 40 iterations 
in all the experiments. 

To measure the localization performance of the algorithms, 
we simply compute the average normalized error in localiza-
tion per sensor: 

 2
1

N

i i
i

p g
ERR

ND
=

−
=
∑

 (10) 

where pi is the localization of sensor i, gi is the gound truth 
location of the sensor (available in our simulation experi-
ments), N is the number of sensors and D is the diameter of 
the embedding. Before applying this measure, the best rigid 
transformation between the embedding and the ground truth 
was computed and factored out. To test the sensitivity of the 
algorithm to noise, random noise εij in the range [-σlij , σlij] is 
added to the true edge lengths lij when constructing the meas-
urement graph: dij = lij+εij. 
 

We compared our ARAP approach with the traditional 
SMACOF approach, when initialized using a Laplacian eigen-
vector embedding, as in [9], the LRE approach [18], and the 
AAAP approach, which is essentially our initial embedding 
for the ARAP procedure. We use the same three-stage refer-
ence patch localization procedure for LRE, AAAP and ARAP 
(typically requiring 20 stress minimization iterations per 
patch), as described in Section IV. The linear systems in-
volved in LRE and AAAP are solved by an eigenvector calcu-
lation, and a global affine transformation is factored out after 
that, as described by Singer [18]. 

 

Our results are summarized in Figs. 2-4, which provide a 
consistent, and clear, picture of the comparative performance 
of the algorithms. LRE, AAAP and ARAP, who are all based 
on the same local reference patch localization, are capable of 
“reproducing” the correct embedding (up to a rigid transforma-
tion) when no noise is present and the measurement graph is 
dense enough. The difference between the three becomes clear 
immediately upon departure from this optimistic scenario. The 
graphs in Fig. 4 show the performance for noise levels between 
0% and 10%, at densities equivalent to 4, 5, and 6 neighbors 
per sensor on the average. The embeddings in Figs. 2-3 were 
generated for inputs contaminated with 5% noise, at the same 
densities. These are the most interesting scenarios, as this is 
more or less where the transition to generic global rigidity typi-
cally occurs. The runtime required to generate each embedding 
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on a 1.86GHz PC with 1G RAM, along with the resulting lo-
calization error, are provided for each embedding.  

Both AAAP and LRE, who allow affine transformations 
between patches, cannot overcome the inaccurate localizations 
of the patches, and even amplify the noise. AAAP is typically a 
little better than LRE. ARAP, on the other hand, compensates 
for inaccurate patch localization with rigid transformations 
between the patches, and is able to filter out the noise. It results 
in localizations which are up to an order of magnitude more 
accurate than the others, at the price of no more than a factor of 
two in runtime. Remember, also, that our versions of LRE and 
AAAP require an eigenvector computation and global affine 
transformation removal, which are not easily distributable. 
From our experience, distributable algorithms for achieving a 
similar effect, such as pinning down a number of anchor verti-
ces and solving a simple linear system (which may be distrib-
uted by a iterative Gauss-Seidel procedure) typically produce 
less accurate results, so the results presented here for LRE and 
AAAP may be interpreted as an upper bound on the perform-
ance of any algorithm within that family. SMACOF, which 
starts off with a reasonable, but nowhere near accurate, embed-
ding, tries to directly minimize stress relative to the measure-
ment graph, but quickly gets stuck in one of many local min-
ima, typically involving “foldovers” in the embedding.  

VII. DISCUSSION 
Our new ARAP approach follows the paradigm of “think 

globally, fit locally”. As only information about local distances 
is available, we are able to localize small reference patches and 
triangles, and then localize the entire network by fitting the 
patches together with rigid transformations to a global coordi-
nate system. 

It is interesting to explore the relationships between the var-
ious methods used in this paper. The iterative SMACOF tries 
to directly minimize the stress cost function (1). Close inspec-
tion of the SMACOF algorithm (see the excellent derivation by 
Gansner et al. [5]) shows that it is actually quite similar in spi-
rit to our iterative ARAP algorithm, and can be considered an 
edge-based version of ARAP. By edge-based, we mean that the 
algorithm tries to stitch together edges rather than triangles or 
patches. But apart from its length, an edge does not contain 
much information on the local rigid structure of the graph, so is 
a very weak version of ARAP. Since the cost function (1) is 
known to be plagued with many local minima, SMACOF will 
quickly get stuck in a suboptimal solution. 

AAAP and LRE are extremely similar. Rather than mini-
mize a global stress function, as SMACOF does, AAAP tries to 
minimize the cost function (3), without constraints on Ri, 
which is therefore a convex quadratic function, having a unique 
global minimum, obtained by solving a linear system of equa-
tions. The main difference between AAAP and LRE are 
whether the optimal affine transformation between a patch and 
the global coordinate system is solved for explicitly along with 
the global embedding, or solved for separately and hard-wired 
into the linear system for the global embedding. Koren et al. 
[11] also distinguish between versions of the PATCHWORK 
algorithm generating Ni linear equations per patch, which is the 
spirit of AAAP, and just one linear equation per patch, which is 
the spirit of  LRE. 

ARAP also minimizes cost function (3), with the non-linear 
constraint on Ri. This cost function may have local minima, 
which ARAP will get stuck in, but these seem to be much few-
er than those of the stress cost function (1), and provide more 
accurate localizations than the global minimum corresponding 
to the cost function of AAAP or LRE. 
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Figure 2:  Localization of 200 sensors in square-shaped region by different algorithms: σ = 5%. Col-
umns: Various algorithms. Rows: Various average number of neighbors. Inlaid numbers are localiza-
tion error (in boldface) and runtime (in millisec). 
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Figure 3:  Localization of 200 sensors in C-shaped region by different algorithms: σ = 5%. Columns: 
Various algorithms. Rows: Various average number of neighbors. Inlaid numbers are localization 
errors (in boldface) and runtime (in millisec). 



 

   

   

Figure 4: Performance comparison between localization algorithms. In all experiments 200 sensors were uniformly distributed in 
a planar region, and a measurement graph constructed by connecting any two sensors i,j such that dij < r. Top row: Square-shaped 
region. Bottom row: C-shaped region. Left column: Average number of neighbors = 4. Center column: Average number of 
neighbors = 5. Right column: Average number of neighbors = 6. The noise parameter σ  along the x-axis means that the inter-
sensor distances dij were corrupted by additive noise uniformly distributed in the range [-σdij , σdij]. The localization error 
measure along the y-axis is computed as defined in (10). 
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