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Abstract—Sensor network localization is an instance of the
NP-HARD graph realization problem. Thus, methods used in
practice are not guaranteed to find the correct localization, even
if it is uniquely determined by the input distances.

In this paper, we show the following: if the sensors are allowed
to wiggle, giving us perturbed distance data, we can apply a novel
algorithm to realize arbitrary generically globally rigid (GGR)
graphs (or maximal vertex subsets in non-GGR graphs whose
relative positions are fixed). And this algorithm works in any
dimension.

In the language of structural rigidity theory, our approach
corresponds to calculating the approximate kernel of a generic
stress matrix for the given graph and distance data. To make
our algorithm suitable for real-world application, we present
techniques for improving the robustness of the algorithm under
noisy measurements, and a strategy for reducing the required
number of measurements.

I. I NTRODUCTION

In this paper, we revisit the problem of determining the 2D
geometric coordinates (up to an unknown Euclidean transform)
of a set of sensors in a network, where we have the ability to
measure the distances between only certain pairs of sensors.
This can be modeled as a graph realization problem.

Due to the importance of the problem, many effective
heuristic strategies and numerical algorithms have been pro-
posed [1], [2], [3], [4], [5], [6], [7], [8]. But graph realization
is, in general, NP-HARD, as is its decision problem GRAPH-
EMBEDDABILITY [9]. Thus, such methods are not guaranteed
to find the correct (or even approximate) localization, evenif
it is uniquely determined by the input distances. We do note
that some methods are guaranteed to work on special families
of input, for example trilateration will work on “trilateration
graphs” [5], and methods based on semi-definite programming
such as [3] will work on input that is “universally globally
rigid” [10]. Both types of input are proper subsets of “globally
rigid” input.

In this paper we investigate a variant of the problem, where
we are able to gather more data, in the form of perturbation
data. In particular, we assume that the sensors are repeatedly
able to move by small amounts, and the distances along the
graph edges are repeatedly measured. We do not need to
know anything about the directions or specific distances of
the movement, as long as the motions are not too large or too
small.

Our main theoretical result is that with enough perturbation
data, of high enough accuracy, we are guaranteed to be able to
localize any “generically globally rigid” (GGR) graph up to

an unknown Euclidean transform. The main theoretical tool
we use is the “stress normal theorem” from the structural
rigidity literature. This theorem tells us that the space of
“equilibrium stresses” of an embedding of a graph is the
orthogonal complement to the tangent space of the image of
a certain map. From the perturbation data, we can estimate
this tangent space, and thus the space of equilibrium stresses.
From these stresses, we are then able to correctly localize the
graph. In this paper, we also discuss the class of subgraphs
that we will be able to localize with our approach, even when
the graph is not GGR.

On the practical side, we discuss numerical methods for
estimating the relevant quantities in order to deal with mea-
surement noise, as well as strategies for reducing the required
measurements.

Although our approach requires many measurements, with
faster measurement technology, this novel approach may be-
come more practical in the future. Moreover, our approach
can also be used to augment current methods, by applying our
method only on the difficult sub-sections of a network. Finally,
our method immediately extends to 3 and higher dimensions.

We refer interested readers to [11] for a more detailed
discussion of our method.

II. T HEORY

In this section we first fix some notations. Most can be
found in [12], [13]. Then we describe the theory behind our
approach.

A. Definitions

A graph G = (V , E) is a pair consisting of a set ofv
vertices, V = {1, . . . , v}, and a set ofe undirectededges,
E . Elements inE are two-element (unordered) subsets ofV .
Given i ∈ V , we define itsneighboring verticesN (i) = {j :
{i, j} ∈ E}.

A framework is a graphG together with a mapping from
V to R

d, assigning a position inRd to each vertex. We use
Cd(G) to denote the space of frameworks for a given graph
G and a given dimensiond. Given a frameworkρ ∈ Cd(G),
ρ(i) is then the position of vertexi in R

d. Two frameworks
ρ, ρ′ ∈ Cd(G) arecongruent, denoted byρ ∼= ρ′, if there exists
R ∈ Euclid(d) such thatρ = R ◦ ρ′, where Euclid(d) is the
space of Euclidean transforms inRd. We also giveCd(G) a
metric by observing that triviallyCd(G) ∼= R

vd.
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The length-squared function, l : Cd(G) → R
e, is a function

that takes in a frameworkρ and outputs ae-dimensional vector,
assigning to each edge inG its squared length, i.e.,l(ρ){i,j} =
‖ρ(i)− ρ(j)‖2 for {i, j} ∈ E . Note that we index elements of
vectors inR

e by edges inE .
A framework ρ is rigid if there existsδ > 0 such that

‖ρ′ − ρ‖ < δ and l(ρ) = l(ρ′) implies ρ ∼= ρ′. This captures
the idea that the graph cannot continuously flex. A framework
ρ is globally rigid if l(ρ) = l(ρ′) always impliesρ ∼= ρ′. In
graph realization, we want to computeρ up to a Euclidean
transform givenl(ρ). Thus the graph realization problem is
well-defined if and only ifρ is globally rigid.

A subset of verticesS is calledglobally linked in a frame-
work ρ if, in all frameworks ofG with the same edge lengths as
ρ, the embeddings ofS are congruent to each other [14]. Note,
a vertex subset can be globally linked in a framework, even
if they do not induce a globally rigid subgraph ofG; because
all of the edges ofE can indirectly constrain the embedding
of S (ee Figure 1).

Fig. 1. The filled vertices are globally linked in the framework, but the filled
vertices and solid edges alone do not form a globally rigid framework.

A frameworkρ ∈ Cd(G) is genericif the coordinates of its
vertex positions, i.e., elements of the matrix(ρ(1), . . . , ρ(v)),
do not satisfy any algebraic equation with rational coefficients.
Focusing on generic frameworks allows one to avoid various
rare singularities and coincidences.

Gortler et al. [13] showed that a generic framework of a
graph is globally rigid if and only if it has a “minimal stress
kernel” (defined below). Moreover, all generic frameworks of
a given graph in a given dimensiond behave identically with
respect to global rigidity. With this in mind, a graph that is
globally rigid for all generic frameworks is calledgenerically
globally rigid (GGR).

B. Measurement Tangent Space

We denote byl(Cd(G)) ⊂ R
e the set of all length squared

measurements of all frameworks of the graph inRd. This set
is semi-algebraic and thus, is a manifold atl(ρ) for almost
every, (and for all generic)ρ. The exceptions form a measure
zero set, which satisfies some low order polynomial equation,
so such singular frameworks are exceedingly rare. For non-
singularρ, there is a well definedmeasurement tangent space
of l(Cd(G)) at l(ρ), which we will denote byT (ρ).

In our sensor network localization approach, we will assume
that we can measure not onlyl(ρ) but alsol(ρ+∆i) for some
sufficient number of∆i’s. With such measurements we can
then use PCA to fit an approximateT (ρ) to these points. In
the limit, with smaller and smaller perturbations, and no noise,
this will converge to the correct linear space for all generic ρ.

C. The Stress Normal Theorem

The linearization (Jacobian) ofl at pointρ is l∗ρ : R
vd → R

e,
and its matrix representation with respect to the standard bases
in R

vd andR
e is called therigidity matrix. For non singular

ρ, we haveT (ρ) = l∗ρ(Rvd), i.e., the tangent space is equal to
the column span of the Jacobian.

A stress vectorof a frameworkρ ∈ Cd(G) is a vectorω ∈
R

e such that for eachi ∈ V ,
∑

j∈N (i)

ω{i,j}(ρ(j) − ρ(i)) = 0. (1)

In other words, the position of each vertex is described as
the weighted average of the positions of its neighbors, with
weights given byω. (And recall that our edges are undirected,
so ω{i,j} = ω{j,i}.) We denote the vector space of all stress
vectors of the frameworkρ by S(ρ) and call it thestress space
at ρ.

The connection between the measurement tangent atl(ρ)
and the stressesS(ρ) is described by what we will call “the
stress normal theorem”.

Theorem 1:For all ρ, S(ρ) is the orthogonal complement
to l∗ρ(Rvd) in R

e.
This theorem can be proved with straightforward calcula-

tion. It has been used explicitly (see for example Lemma 2.5
of [12]) and implicitly (see for example page 186 of [15]) in
the structural rigidity literature for many years. And thus, for
genericρ, S(ρ) is orthogonal complement toT (ρ) in R

e.
We can now conclude that, from the measurement tangent

space, we can compute the stress space for a generic frame-
work.

D. Positions (Almost) from Stresses

A stress matrixof a frameworkρ is a rearrangement of a
stress vector into a matrix form, with suitably chosen diagonal
entries. It is av × v symmetric real matrixΩ satisfying: (i)
For all i, j ∈ V : Ωi,j = ω{j,i} if i 6= j and {i, j} ∈ E ; (ii)
For all i, j ∈ V : Ωi,j = 0 if i 6= j and {i, j} /∈ E ; (iii)
Ω (1, . . . , 1)T = 0. Because of the bijective correspondence
between stress vectors and stress matrices, we will writeΩ ∈
S(ρ).

The stress kernelK(ρ) of a frameworkρ is the inter-
section of the kernels of all its stress matrix, i.e.,K(ρ) =
⋂

Ω∈S(ρ) kerΩ. From the stress space, we can easily compute
the stress kernel. (Moreover, the stress kernel will exactly
match the kernel of almost any randomly selected stress matrix
from the stress space.)

From the definition, we can state thatK(ρ) contains1 =
(1, . . . , 1)T and the column space of(ρ(1), . . . , ρ(v))T . This
corresponds to the fact that every stress matrix inS(ρ) is also
a stress matrix for anyρ′ related toρ by some d-dimensional
affine transform.

Suppose nowdimK(ρ) = d + 1 (i.e. it contains only the
vectors spanned by the above statement). Then we say that
the framework has aminimal stress kernel. Suppose we have
computed a basis for such a minimal stress kernelK(ρ):
{1,x1, . . . ,xd}. Define ρ′ ∈ Cd(G) such thatρ′(i) is the
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ith column of (x1, . . . ,xd)
T . Then ρ must be related toρ′

by a d-dimensional affine transformation. Let us denote byL
the d by d matrix representing the linear part of this affine
transform.

Thus if the framework has a minimal stress kernel, then
from the computed stress space (or even a single random stress
matrix) we can compute the coordinates of the vertices inV
up to an affine transform.

If the framework does not have a minimal stress kernel, all
is not lost. Suppose there is a subsetS ⊂ V , such thatK(ρ) is
in fact of dimensiond+1 when projected onto the coordinates
corresponding toS. (The natural inclusionS ⊂ V induces a
projectionπS : R

|V| → R
|S|.) Then, using the same reasoning,

from theprojected stress kernelπSK(ρ), we can compute the
coordinates of the vertices inS up to an affine transform.

To find maximum subsets with a minimal projected stress
kernel, we start by finding a seed componentS0 with d +
1 vertices satisfying the condition, and then we sequentially
(order does not matter for linear dependence) add any vertexi
to the component as long asdimπS0∪{i}K(ρ) remainsd + 1,
until there is none that can be added without increasing the
dimension. Conveniently, all generic frameworks of a given
graph in a given dimension behave identically with respect to
this property. So instead of using the noisy input distance data,
we find such subsets using exact distances on a random test
framwork of the graph that we generate ourselves.

E. Removing the Affine

We will now use the edge lengths to remove this free affine
transform in the coordinates ofV (resp. ofS). Let ρ′ and L
be as defined in the previous section. Consider the following
system of equation, in the unknownd × d matrix L.

∀{i, j} ∈ E : ‖L(ρ′(i) − ρ′(j))‖2 = l(ρ){i,j} (2)

We know there must be some solutionL.
To solve this system letM = LT L giving us the following

set of linear equations (in thed(d+1)
2 unknowns ofM ):

∀{i, j} ∈ E : (ρ′(i) − ρ′(j))T M(ρ′(i) − ρ′(j)) = l(ρ){i,j}.
(3)

(For the case of a subset of vertices, we defineE to be the set
of edges with both vertices in the subsetS).

Using Cholesky decomposition onM then yieldsL.
The only remaining concern is whether, this system has

more than one solution. Fortunately, it was proven in Prop 4.3
of [12] that if ρ is a generic framework of a graph where each
vertex has degree at leastd, then the solution to (3) must be
unique. Moreover in his proof for his Theorem 1.3, Connelly
shows that if generic framework of graph withd + 2 or more
vertices, has a minimal stress kernel, then each vertex must
have degree at leastd + 1.

When dealing with a subset of the vertices, and a projected
stress kernel, we do not know of any specific guarantees of
the vertex degrees, and must check this condition manually.

F. When Will We Succeed?

In summary, if a generic framework has a minimal stress
kernel, then our algorithm will correctly localize the graph up
to a Euclidean transform. Moreover, as mentioned above, this
condition is in fact equivalent to the generic global rigidity of
the underlying graph [13].

If the graph is not GGR, then our algorithm will correctly
localize any vertex subsetS with dimπSK(ρ) = d + 1 and
vertex degree at leastd in the induced subgraph. In fact, this
condition is sufficient forS to be globally linked in all generic
frameworks, although whether it is a necessary condition is
still an open question.

III. N UMERICAL ALGORITHM

A. Estimating the Measurement Tangent, and Stress Space

We assume that we can perturb each vertex of the graph to
obtain a slightly different framework, and measure its image
underl. Formally, letδ > 0 be a predefined parameter which
we call perturbation radius, and defineBδ(ρ) = {ρ′ ∈
Cd(G) : ‖ρ′(i)−ρ(i)‖ < δ for all i ∈ V}. We also assume that
we can obtainl(ρ1), . . . , l(ρM ) for some fixed number,M ,
of random samplesρi ∈ Bδ(ρ). We then approximateT (ρ)
by fitting a hyperplane to these points using PCA.

Choosing M . In order to properly approximate the mea-
surement tangent spaceT (ρ) through PCA, we set the number
of samples,M , to dµ dimT (ρ)e, whereµ ≥ 1 is a sampling
factor parameter. The exact value ofµ depends on how noisy
the distance measurements are. In practice, settingµ = 4 often
suffices for moderate level of noise. Note thatdimT (ρ) is
a generic property which can be calculated from almost any
random framework ofG in R

d. Moreover, when the framework
is rigid, dimT (ρ) takes its upper bound of(vd −

(

d+1
2

)

).
Thus the number of perturbations we need scales linearly with
vd. For each perturbationρi, an entire set of edge length
measurements then need to be made to getl(ρi), so the total
number of required pair-wise length measurements isO(vde).
In Section III-D, we present a strategy for reducing the number
of required measurement.

Choosingδ. Ideally,δ should be as small as possible. Then
in the limit, our approximated measurement tangent space
will converge to the trueT (ρ). However, in practice, length
measurement is noisy, andδ needs to be set large enough
to dominate the noise. In our simulation, we find that when
the noise is normally distributed with varianceσ2, setting
δ = 20σ produces good results for a wide variety of graphs
(see Section IV for details).

PCA details. Becausel(Cd(G)) is a cone,T (ρ) must
include the origin. Thus we use the origin0 = (0, . . . , 0)T

rather than the statistical mean of thel(ρi)’s as the center for
PCA. We also verified experimentally that this choice often
produces more accurate results in the presence of measurement
noise.

B. Stress Kernel from Measurement Tangent

The stress kernel is the same as the kernel of any generic
stress matrix inS(ρ), so we could take a random stress matrix
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from the stress space and compute its kernel. With no noise,
we know that the kernel of such anΩ for a GGR graph will
be well-defined and of dimensiond + 1.

However, in the presence of measurement noise, there no
longer is a distinct gap in magnitude between the(d + 1)th
and the(d+2)th smallest eigenvalues ofΩ, i.e., the kernel of
Ω is no longer numerically well-defined. If we naively use the
eigenvectors corresponding to the smallestd+1 eigenvalues to
recover the graph embedding, we usually get extremely large
error in the resulting realization.

We find it is possible to dramatically increase the accuracy
of the computed stress kernel by taking into account more
than a single stress matrix. Calculating the eigenvectors of Ω
corresponding to the smallest eigenvalues is equivalent tocom-
puting orthonormal vectorsy1, . . . ,yd+1 such that‖Ωyi‖2

is minimized in the order ofi = 1, . . . , d + 1. We extend
this notion to multiple stress matrices. With stress matrices
Ω1, . . . , ΩN , we thus seek orthonormal vectorsy1, . . . ,
yd+1 minimizing

∑

j ‖Ωjyi‖2 in the orderi = 1, . . . , d + 1.
Since

∑

j ‖Ωjyi‖2 = yT
i (

∑

j ΩT
j Ωj)yi, the yi’s are simply

the eigenvectors ofΣ =
∑

j ΩT
j Ωj corresponding to the

smallestd + 1 eigenvalues. We callΣ the aggregated squared
stress matrix. In practice, using even just two stress matrices
produces significant better results compared with using a
single stress matrix in the presence of noise.

C. Positions from Stress Kernel

When there is noise in the measurement, we in general
cannot expect (3) to be exactly solvable. Our approach is to
solve the linear systems in the least square sense with the
constraintM � 0, using semi-definite programming ([16],
[8]). In addition, as in [8], we optionally useD > (d + 1)
eigenvectors fromΣ to recover the positions. In this case we
obtain an embedding inRD−1 and must use PCA to project
back down toR

d.

D. Reducing Required Measurements

To reduce the requirement measurements, we can calcu-
late the stress space of some overlapping subgraphs ofG:
H1,H2, . . . from a fixed set of perturbed length measurements.
Since these subgraphs are much smaller thanG, we can use a
much smaller measurement set. In particular, the subsets we
use are the 2-rings inG, and if there is an upper limit on vertex
degree, then the number of required pairwise measurement is
reduced toO(de), linear in the graph size.

As described in [11], we can add together these stress spaces
from the subgraphs to obtain a stress subspace of the whole
graph,S∗(p) ⊂ S(p) and a enlarged stress kernelK∗(p) ⊃
K(p). Although we have no guarantee thatdim(K∗(p)) =
dim(K∗(p)), in practice it often is, and in any case we can
still proceed with our algorithm and localize any vertex subset
whereK∗(ρ) projects down to the appropriate dimension.

IV. RESULTS AND DISCUSSIONS

In this section we briefly evaluate our algorithm using sim-
ulation. We refer interested readers to [11] for more detailed
experimental data and discussions.

Testing graphs: We test our algorithm on two types of
random graphs: The first, which we callisotropic graphs, are
constructed by placing vertices uniform-randomly in[0, 1]2,
and putting an edge between vertices that are within adistance
threshold, R. The second, which we callanisotropic graphs,
are constructed by first doing the same, but then overlaying
an actual floor plan and disconnecting edges that cross walls,
thus making connectivity highly non-uniform. In addition,we
enforce maximal vertex degree constraints: 7 for isotropic
graphs and 9 for anisotropic graphs. The actual mean vertex
degree for the resulting graphs are typically around 7 and 7.5
respectively. We optionally prune the graphs to make them
GGR. Note that this level of connectivity usually does not
allow trilateration based method to localize the entire graph.
For brevity, we report simulation results on twofixedinstances
from these two categories, shown in Figure 2.
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Fig. 2. Sample isotropic (left, v=200) and anisotropic (right, v=137) testing
graphs. For each graph, the largest subgraph that can be localized through
trilateration is shown in red. Both graphs are GGR.

Noise model:We use an additive noise model. The noise
term follows a zero-mean Gaussian distribution with a standard
deviation of εR, where ε is a noise levelparameter. The
commercially available UWB devices described in [17] has
a maximum range of about 30 meters and its high-probability
error has a standard deviation of 3cm. This corresponds to
setting the noise levelε = 0.1%. We also present testing
results of settingε = 0.01%, representing a future generation
of ranging devices. In our tests, We refer to these two cases
ashigh noiseand low noisesettings.

Error metrics: The output of our algorithm by definition
leaves free a Euclidean transform. In order to compare the
computed localization,ρ′, to the ground truth,ρ, we first
align up the two using the least-square optimalQ ∈ Euclid(d)
minimizing

∑

i ‖ρ(i) − Q(ρ′(i))‖2, computed using the Pro-
crustes method [18]. Note that this alignment step does not
improve theintrinsic quality of the output. We then calculate
two simple error metrics (which are also used in [7]): the
positional error, σp, defined as

σ2
p = v−1

v
∑

i=1

‖ρ(i) − Q(ρ′(i))‖2,

and thedistance error, σp, defined as

σ2
d = e−1‖l

1

2 (ρ) − l
1

2 (ρ′)‖2,
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wherel
1

2 (ρ) is simply l(ρ) with every element square-rooted,
i.e, it is a vector of edge lengths as opposed to squared edge
lengths.

From simulation, we found that without noise (ε = 0), and
with a small perturbation radius (δ = 10−4), our method
essentially performs as predicted by the theory, and always
recovers entire GGR frameworks and any detected generically
globally linked component of non-GGR frameworks with
negligible error. Thus we are mostly interested in how our
method performs in the presence of noise, which depends
heavily on the choice of parameters described in Section III:

• µ controls how many perturbations are used.
• δ controls how much we perturb each vertex. To be

relevant, we always report the ratioδ
εR

.
• N stress matrices are used to form the aggregated squared

stress matrix.
• D coordinate vectors are used to reconstruct the frame-

work.

The numerical accuracy of our algorithm for the two testing
graphs and two noise levels, under suitably chosen parameters
are summarized in Table I. To provide an intuitive feel for
these numbers, we present corresponding plots of the error
vectors(ρ − ρ′) in Figure 3. Note that our algorithm handles
the isotropic graph very well, both at low and high noise levels.
The anisotropic testing case is heavily affected by the noise
level though. For more experimental data on the effects of the
parameters, see [11].

TABLE I
ACCURACY OF OUR ALGORITHM UNDER SUITABLE PARAMETERS. IN ALL

CASES, µ = 4.0 AND N = 200.

isotropic (v=200) anisotropic (v=137)
high noise low noise high noise low noise

εR in 10−5 29 2.9 29 2.9
δ in 10−4 58 23 58 23
δ

εR
20 80 20 80

D 4 4 6 6
σp in 10−4 48 6.3 390 55
σd in 10−4 21 2.4 80 28

Experimentally we find our method produces results of
similar quality on detected generically globally linked sub-
graphs of non-GGR graphs, though the optimalD depends on
subgraph size. (SettingD proportional to the logarithm of the
number of subgraph vertices produces good results for us.)
Our measurement reduction strategy works very well with our
isotropic testing graphs. For anisotropic testing graphs,the
method can also localize a large portion of the graph. (For
details, please see [11].)
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