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Abstract—Sensor network localization is an instance of the an unknown Euclidean transform. The main theoretical tool
NP-HARD graph realization problem. Thus, methods used in we use is the “stress normal theorem” from the structural
practice are not guaranteed to find the correct localization even rigidity literature. This theorem tells us that the space of

if it is uniquely determined by the input distances. “ o ” . .
In this paper, we show the following: if the sensors are alloed  €duilibrium stresses” of an embedding of a graph is the

to wiggle, giving us perturbed distance data, we can apply aovel ~Orthogonal complement to the tangent space of the image of
algorithm to realize arbitrary generically globally rigid (GGR) a certain map. From the perturbation data, we can estimate
graphs (or maximal vertex subsets in non-GGR graphs whose thjs tangent space, and thus the space of equilibrium ssess
g‘?ﬁg‘r’éig’rﬁ)s'“ons are fixed). And this algorithm works in any o these stresses, we are then able to correctly lochlize t
In the language of structural rigidity theory, our approach ~9raph. In this paper, we also discuss the class of subgraphs
corresponds to calculating the approximate kernel of a geme  that we will be able to localize with our approach, even when

stress matrix for the given graph and distance data. To make the graph is not GGR.

ourha.lgorithfm suitable forhreal-bworld app][iCﬁtionl, Wghpresgnt On the practical side, we discuss numerical methods for
techniques for improving the robustness of the algorithm umler o i 440G ‘the relevant quantities in order to deal with mea
noisy measurements, and a strategy for reducing the requik . . . .
number of measurements. surement noise, as well as strategies for reducing the nedjui
measurements.
. INTRODUCTION Although our approach requires many measurements, with

In this paper, we revisit the problem of determining the 2Easter measurement technology, this novel approach may be-
geometric coordinates (up to an unknown Euclidean tramgforcome more practical in the future. Moreover, our approach
of a set of sensors in a network, where we have the ability ¢an also be used to augment current methods, by applying our
measure the distances between only certain pairs of sensmrsthod only on the difficult sub-sections of a network. Rinal
This can be modeled as a graph realization problem. our method immediately extends to 3 and higher dimensions.

Due to the importance of the problem, many effective We refer interested readers to [11] for a more detailed
heuristic strategies and numerical algorithms have been pdiscussion of our method.

posed [[1], [2], [3], [4], [5], [6], [7], [8]. But graph realition

is, in general, NP-HARD, as is its decision problerrA®H- Il. THEORY
EMBEDDABILITY [9]. Thus, such methods are not guaranteed . . , . .
In this section we first fix some notations. Most can be

to find the correct (or even approximate) localization, eifen _ . )
it is uniquely determined by the input distances. We do no{gund in [12), [I3]. Then we describe the theory behind our

that some methods are guaranteed to work on special famil?é’é)roa(:h'

of input, for example trilateration will work on “trilateti@n A Definitions

graphs” [5], and methods based on semi-definite programming

such as[[B] will work on input that is “universally globally A graph G = (V,&) is a pair consisting of a set of

rigid” [LO]. Both types of input are proper subsets of “gltpa vertices V = {1,...,v}, and a set ofe undirectededges

rigid” input. £. Elements in are two-element (unordered) subsets)of
In this paper we investigate a variant of the problem, whefsiveni € V', we define itsneighboring verticesV (i) = {; :

we are able to gather more data, in the form of perturbatidn, j} € £}.

data. In particular, we assume that the sensors are repeatedA frameworkis a graphg together with a mapping from

able to move by small amounts, and the distances along theo R?, assigning a position ifR? to each vertex. We use

graph edges are repeatedly measured. We do not need’t@G) to denote the space of frameworks for a given graph

know anything about the directions or specific distances Gfand a given dimensiod. Given a frameworkp € C4(G),

the movement, as long as the motions are not too large or {0@) is then the position of vertexin R¢. Two frameworks

small. p,p’ € C4G) arecongruentdenoted by = o/, if there exists
Our main theoretical result is that with enough perturbatioR? € Euclid(d) such thatp = R o p, where Euclidd) is the

data, of high enough accuracy, we are guaranteed to be ablsgace of Euclidean transforms k. We also giveC¢(G) a

localize any “generically globally rigid” (GGR) graph up tometric by observing that trivially>¢(G) =~ Rv%.



The length-squared functigri : C¢(G) — R, is a function C. The Stress Normal Theorem
that takes in a frameworkand outputs a-dimensional vector,  The jinearization (Jacobian) ot pointp is I* : RV — Re,

ass?gning to faCh gdgeﬁwits squared Ienth, Lel(p) "7} = and its matrix representation with respect to the standase®
(i) —P_(J)|e| for {i,j} € £. Note that we index elements ofiy gvd andRe is called therigidity matrix. For non singular
vectors inR® by edges irc. p, we haveT (p) = I(R"9), i.e., the tangent space is equal to

A framework p is rigid if there existsd > 0 such that the column span of the Jacobian.
" = pll <6 andi(p) = i(p') implies p = p'. This captures A stress vectoof a frameworkp € C4(G) is a vectorw €
the idea that the graph cannot continuously flex. A framewogle sych that for each € V,
p is globally rigid if I(p) = I(p) always impliesp = p’. In

graph realization, we want to compugeup to a Euclidean Z w7 (p(4) = p(i)) = 0. (1)
transform givenl(p). Thus the graph realization problem is JEN (D)
well-defined if and only ifp is globally rigid. In other words, the position of each vertex is described as

A subset of vertices is calledglobally linkedin a frame- the weighted average of the positions of its neighbors, with
work p if, in all frameworks ofG with the same edge lengths asyeights given byw. (And recall that our edges are undirected,
0 the embeddings of are congruent to each Othml‘l-] Notego w{i,j} = w{j-,i}_) We denote the vector space of all stress
a vertex subset can be globally linked in a framework, evégctors of the framework by S(p) and call it thestress space
if they do not induce a globally rigid subgraph 6f because at p.
all of the edges ot can indirectly constrain the embedding The connection between the measurement tangehtpat
of S (ee Figurd1L). and the stresseS(p) is described by what we will call “the
stress normal theorem”.

Theorem 1:For all p, S(p) is the orthogonal complement
to 1% (Rv%) in R®.

This theorem can be proved with straightforward calcula-
tion. It has been used explicitly (see for example Lemma 2.5
of [12]) and implicitly (see for example page 186 bf [15]) in
the structural rigidity literature for many years. And thisr
genericp, S(p) is orthogonal complement t&(p) in Re.

We can now conclude that, from the measurement tangent
space, we can compute the stress space for a generic frame-
work.

Fig. 1. The filled vertices are globally linked in the framelyobut the filled
vertices and solid edges alone do not form a globally rigaarfework.

A frameworkp € C?(G) is genericif the coordinates of its
vertex positions, i.e., elements of the matfp1), ..., p(v)),
do not satisfy any algebraic equation with rational coedfits.
Focusing on generic frameworks allows one to avoid variolls Positions (Almost) from Stresses

rare singularities and coincidences. A stress matrixof a frameworkp is a rearrangement of a

Gortler et al. [18] showed that a generic“frgmework of &ress vector into a matrix form, with suitably chosen dizjo
graph is globally rigid if and only if it has a “minimal stressgptries. It is av x v symmetric real matrix? satisfying: (i)
kernel” (defined below). Moreover, all generic frameworks o=, 4| i,j €V, =wlidif i £ jand{i,j} € & (i)

a given graph in a given d|n_1en5|(_ahl_3ehaye identically Wlth_|:or allé,j € Vi Q;; = 01if ¢ # j and {i,j} ¢ &, (iii)
respect to global rigidity. With this in mind, a graph that I$)(1,...,1)T = 0. Because of the bijective correspondence
globally rigid for all generic frameworks is callegenerically penveen stress vectors and stress matrices, we will Wriee
globally rigid (GGR). S(p).

The stress kernelK (p) of a frameworkp is the inter-
section of the kernels of all its stress matrix, i.&(p) =

We denote by (C4(G)) C R® the set of all length squaredﬂﬂes(p) ker ). From the stress space, we can easily compute
measurements of all frameworks of the graphif This set the stress kernel. (Moreover, the stress kernel will eyactl
is semi-algebraic and thus, is a manifold/§) for almost match the kernel of almost any randomly selected stressxmatr
every, (and for all generig). The exceptions form a measure€rom the stress space.)
zero set, which satisfies some low order polynomial equation From the definition, we can state that(p) containsl =
so such singular frameworks are exceedingly rare. For nans ..., 1)” and the column space @p(1),..., p(v))T. This
singularp, there is a well definecheasurement tangent spaceorresponds to the fact that every stress matrig(ip) is also
of [(C4(G)) atl(p), which we will denote byT'(p). a stress matrix for any’ related top by some d-dimensional

In our sensor network localization approach, we will assunadfine transform.
that we can measure not orilp) but alsol(p+ A;) for some Suppose nowlim K (p) = d + 1 (i.e. it contains only the
sufficient number ofA;’'s. With such measurements we carvectors spanned by the above statement). Then we say that
then use PCA to fit an approximaf®p) to these points. In the framework has aninimal stress kernelSuppose we have
the limit, with smaller and smaller perturbations, and nisep computed a basis for such a minimal stress kerfigp):
this will converge to the correct linear space for all geoeri  {1,x;,...,x4}. Define p/ € C4(G) such thatp'(i) is the

B. Measurement Tangent Space



ith column of (x1,...,x4). Thenp must be related t¢p/ F. When Will We Succeed?
by a d-dimensional affine transformation. Let us denotdlby |, summary, if a generic framework has a minimal stress
the d by d matrix representing the linear part of this affingernel, then our algorithm will correctly localize the ghapp
transform. to a Euclidean transform. Moreover, as mentioned above, thi
Thus if the framework has a minimal stress kernel, thegbndition is in fact equivalent to the generic global rigydbf
from the computed stress space (or even a single randors st¢ag underlying grapH [13].
matrix) we can compute the coordinates of the vertice¥ in  |f the graph is not GGR, then our algorithm will correctly
up to an affine transform. localize any vertex subse with dim 75K (p) = d + 1 and
If the framework does not have a minimal stress kernel, alertex degree at leagtin the induced subgraph. In fact, this
is not lost. Suppose there is a subSet V, such thatk'(p) is  condition is sufficient foS to be globally linked in all generic
in fact of dimension/+-1 when projected onto the coordinatesrameworks, although whether it is a necessary condition is
corresponding tGS. (The natural inclusiors C V induces a still an open question.
projectionrs : RVl — RIS1)) Then, using the same reasoning,
from theprojected stress kernels K (p), we can compute the 1. NUMERICAL ALGORITHM
coordinates of the vertices ifi up to an affine transform. ~ A. Estimating the Measurement Tangent, and Stress Space
To find maximum subsets with a minimal projected stress We assume that we can perturb each vertex of the graph to
kernel, we start by finding a seed compon&gtwith d + obtain a slightly different framework, and measure its imag
1 vertices satisfying the condition, and then we sequeptialinder!. Formally, leté > 0 be a predefined parameter which

(order does not matter for linear dependence) add any vértewe call perturbation radius and defineBs(p) = {p €
to the component as long dsm 75,11 K (p) remainsd+1,  C4(G) : ||p'(i)—p(i)| < 6 forall i € V}. We also assume that
until there is none that can be added without increasing th& can obtain(p,), ..., [(pa) for some fixed number)/,

dimension. Conveniently, all generic frameworks of a giveof random sampleg; € Bs(p). We then approximat&'(p)
graph in a given dimension behave identically with respect by fitting a hyperplane to these points using PCA.

this property. So instead of using the noisy input distarate,d ~ Choosing M. In order to properly approximate the mea-
we find such subsets using exact distances on a random gestment tangent spa@&p) through PCA, we set the number

framwork of the graph that we generate ourselves. of samples, M, to [udim T (p)], whereu > 1 is asampling
factor parameter. The exact value pfdepends on how noisy
E. Removing the Affine the distance measurements are. In practice, seitiagt often

) ) _suffices for moderate level of noise. Note thkin T'(p) is
We will now use the edge lengths to remove this free affing generic property which can be calculated from almost any

transform in the coordinates of (resp. ofS). Let " and L (3n4om framework of in R%. Moreover, when the framework

be as defined in the previous section. Consider the following rigid, dim T'(p) takes its upper bound ofvd — (d+1))
1 2 .

system of equation, in the unknowx d matrix L. Thus the number of perturbations we need scales linearty wit
. . A 2 (i} vd. For each perturbatiop;, an entire set of edge length
Vi g} € £ IL( (1) = PG = 1p) (@) measurements then need to be made tage}, so the total
number of required pair-wise length measurement3(isde).
In SectiorIII-D, we present a strategy for reducing the nemb
of required measurement.
Choosingd. Ideally,é should be as small as possible. Then
. Lo T T ey (i} in the limit, our approximated measurement tangent space
Vi gk €€ (0 () — P ()" M(p'(0) — p'(5)) = L(p) (é) will converge to the truel’(p). However, in practice, length
(For the case of a subset of vertices, we defirte be the set measur_ement 'S NOISY, ant nee_ds to_be set Igrge enough
of edges with both vertices in the subsat to dominate the noise. In our simulation, we find that when
ges wi vert ! u the noise is normally distributed with varianee, setting

Using Cholesky Qecompositior? o then yielqlsL. 0 = 200 produces good results for a wide variety of graphs
The only remaining concern is whether, this system hf(1§ee SectiofiIV for details).

more than one solution. Fortunately, it was proven in Pr@ 4. pca details. Becausel(C4(G)) is a cone,T(p) must

of [12] that if p is a generic framework of a graph where eac,jude the origin. Thus we use the origin= (0, ...,0)7
vertex has degree at leagtthen the solution td {3) must be qiher than the statistical mean of thig;)'s as the center for
unique. Moreover in his proof for his Theorem 1.3, Connellpca. we also verified experimentally that this choice often

shows that if generic framework of graph witht-2 or more  ,rqqyces more accurate results in the presence of measureme
vertices, has a minimal stress kernel, then each vertex mysise

have degree at leagt+ 1.

When dealing with a subset of the vertices, and a projectBd Stress Kernel from Measurement Tangent
stress kernel, we do not know of any specific guarantees ofThe stress kernel is the same as the kernel of any generic
the vertex degrees, and must check this condition manuallgtress matrix inS(p), so we could take a random stress matrix

We know there must be some solutién
To solve this system let/ = L™ L giving us the following
set of linear equations (in thé(dQLl) unknowns ofM):



from the stress space and compute its kernel. With no noiseJesting graphs We test our algorithm on two types of
we know that the kernel of such &b for a GGR graph will random graphs: The first, which we c@btropic graphsare
be well-defined and of dimensiah+ 1. constructed by placing vertices uniform-randomly|in1]2,
However, in the presence of measurement noise, there ama putting an edge between vertices that are withlis@nce
longer is a distinct gap in magnitude between thet 1)th threshold R. The second, which we cadinisotropic graphs
and the(d + 2)th smallest eigenvalues 6f, i.e., the kernel of are constructed by first doing the same, but then overlaying
Q is no longer numerically well-defined. If we naively use than actual floor plan and disconnecting edges that cross,walls
eigenvectors corresponding to the smallestl eigenvalues to thus making connectivity highly non-uniform. In additiome
recover the graph embedding, we usually get extremely largeforce maximal vertex degree constraints: 7 for isotropic
error in the resulting realization. graphs and 9 for anisotropic graphs. The actual mean vertex
We find it is possible to dramatically increase the accurachegree for the resulting graphs are typically around 7 abd 7.
of the computed stress kernel by taking into account morespectively. We optionally prune the graphs to make them
than a single stress matrix. Calculating the eigenvectbfs o0 GGR. Note that this level of connectivity usually does not
corresponding to the smallest eigenvalues is equivalestrio-  allow trilateration based method to localize the entireppra
puting orthonormal vectors,...,ya+1 such that||Qy;||*> For brevity, we report simulation results on tfiedinstances
is minimized in the order of = 1,...,d + 1. We extend from these two categories, shown in Figlite 2.
this notion to multiple stress matrices. With stress magic
Qq, ..., Qu, we thus seek orthonormal vectoss, ...,
Ya+1 minimizing >° [|[Q;y;[|* in the orderi = 1,...,d + 1.
Since Y [|Q;yill> = v (3, 2] Q;)yi, they,’s are simply
the eigenvectors of: = 3 Q7Q; corresponding to the
smallestd + 1 eigenvalues. We calll the aggregated squared _
stress matrix In practice, using even just two stress matrice,,|
produces significant better results compared with using |..
single stress matrix in the presence of noise. 02f.

1.0 1.0

C. Positions from Stress Kernel
When there is noise in the measurement, we in gene.’’

cannot exp_ecli]3) to be e)_(aCtIy solvable. Our approach IS l'-tl(& 2. Sample isotropic (left, v=200) and anisotropic ftigv=137) testing
solve the linear systems in the least square sense with gighs. For each graph, the largest subgraph that can bézdacahrough
constraintM = 0, using semi-definite programming (]16],trilateration is shown in red. Both graphs are GGR.

[8]). In addition, as in[[8], we optionally us® > (d + 1)

eigenvectors fronk to recover the positions. In this case we 'N0isé model:We use an additive noise model. The noise
obtain an embedding i®”~! and must use PCA to projectterm follows a zero-mean Gaussian distribution with a shacd

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

back down toR. deviation of eR, where e is a noise levelparameter. The
_ ) commercially available UWB devices described [in][17] has
D. Reducing Required Measurements a maximum range of about 30 meters and its high-probability

To reduce the requirement measurements, we can calewor has a standard deviation of 3cm. This corresponds to
late the stress space of some overlapping subgraphs: ofsetting the noise levet = 0.1%. We also present testing
H1,Ho, ... from afixed set of perturbed length measurementssults of setting = 0.01%, representing a future generation
Since these subgraphs are much smaller thawe can use a of ranging devices. In our tests, We refer to these two cases
much smaller measurement set. In particular, the subsets aghigh noiseandlow noisesettings.
use are the 2-rings i@, and if there is an upper limit on vertex Error metrics: The output of our algorithm by definition
degree, then the number of required pairwise measuremeneaves free a Euclidean transform. In order to compare the
reduced toO(de), linear in the graph size. computed localizationp’, to the ground truthp, we first

As described in[1/1], we can add together these stress spaagn up the two using the least-square optia& Euclid(d)
from the subgraphs to obtain a stress subspace of the whmiigimizing ", ||p(i) — Q(p'(i))||*, computed using the Pro-
graph,S*(p) C S(p) and a enlarged stress kerngl(p) > crustes method [18]. Note that this alignment step does not
K(p). Although we have no guarantee thdéiin(K*(p)) = improve theintrinsic quality of the output. We then calculate
dim(K*(p)), in practice it often is, and in any case we catwo simple error metrics (which are also used [in [7]): the
still proceed with our algorithm and localize any vertexseth positional error, o,,, defined as
where K*(p) projects down to the appropriate dimension.

2 _ -1 . /(. 2
IV. RESULTS AND DISCUSSIONS oy =v Y lle(i) = QU (D)),
=1

In this section we briefly evaluate our algorithm using Siménd thedistance error o, defined as
ulation. We refer interested readers [fol[11] for more dethil pr : }
experimental data and discussions. o2 =e Yz (p) =12 (073,



wherelz (p) is simply [(p) with every element square-rooted, "’
i.e, it is a vector of edge lengths as opposed to squared ed |
lengths. |

From simulation, we found that without noise=£ 0), and
with a small perturbation radiusi (= 10~%), our method
essentially performs as predicted by the theory, and alway.
recovers entire GGR frameworks and any detected gengrica
globally linked component of non-GGR frameworks withezt
negligible error. Thus we are mostly interested in how ou

0.6[

1.0
’, 0.8F
0.6
0.4r

1 0.2f

method performs in the presence of noise, which depenf<:

heavily on the choice of parameters described in Se€fidn Il

o u controls how many perturbations are used. ol

« & controls how much we perturb each vertex. To be
relevant, we always report the rati;%.

o N stress matrices are used to form the aggregated squal
stress matrix. oaf

« D coordinate vectors are used to reconstruct the fram
work.

The numerical accuracy of our algorithm for the two testing

0.6

0.2

graphs and two noise levels, under suitably chosen parasnet’®s
are summarized in Tablg |. To provide an intuitive feel for

these numbers, we present corresponding plots of the e@?&%c

0.0
1.0 0.0

Realization results for isotropic (top row) and airiepic (bottom)
ases under high (left) and low (right) noise caoditDrawn in red are

vectors(p — p') in Figure[3. Note that our algorithm handleshe error vectors pointing from the ground-truth frameveotts the computed
the isotropic graph very well, both at low and high noise Igve frameworks (under optimal alignment) for different tegticases.

The anisotropic testing case is heavily affected by theenois
level though. For more experimental data on the effects ef th
parameters, seé [11]. (4]

TABLE | [5]

ACCURACY OF OUR ALGORITHM UNDER SUITABLE PARAMETERSIN ALL

CASES ¢ = 4.0 AND N = 200. 6]

isotropic (v=200) anisotropic (v=137) [7]
high noise| Tow noise | high noise | Tow noise

cR_ini0 7 29 2.9 29 2.9 18]
B in 10— 58 23 58 23
2 20 80 20 80
D 4 4 6 6 [0l
op In107% 48 6.3 390 55
oq In107% 21 2.4 80 28

[10]

Experimentally we find our method produces results of
similar quality on detected generically globally linkedbsu [11]
graphs of non-GGR graphs, though the optifatiepends on
subgraph size. (Settind proportional to the logarithm of the [12]
number of subgraph vertices produces good results for Lﬁgj
Our measurement reduction strategy works very well with our
isotropic testing graphs. For anisotropic testing graphs, [14]
method can also localize a large portion of the graph. (For
details, please see[11].) [15]
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